

Real Time Systems 15EC743

REAL – TIME SYSTEMS

Module – 1

Introduction to Real – Time Systems:

Historical Background, RTS Definition, Classification of Real – Time Systems, Time constraints,

Classification of programs.

Concepts of Computers Control:

Introduction, Sequence Control, Loop Control, Supervisory Control, Centralized Computer

Control, Distributed System, Human-Computer interface, Benefits of Computer Control Systems.

Module - 2

Computer Hardware Requirements for RTS:

Introduction, General Purpose Computer, Single Chip Microcontroller, Specialized Processors,

Process –Related Interfaces, Data Transfer Techniques, Communications, Standard Interface.

Module- 3

Languages For Real –Time Applications:

Introduction, Syntax Layout and Readability, Declaration and Initialization of Variables and

Constants, Modularity and Variables, Compilation , Data Type, Control Structure, Exception

Handling, Low –Level Facilities, Co routines, Interrupts and Device Handling, Concurrency, Real –

Time Support, Overview of Real –Time Languages.

BGSIT,Dept. Of ECE

Page 1

Real Time Systems 15EC743

PART –B

Module-4

Operating Systems:

Introduction, Real –Time Multi –Tasking OS, Scheduling Strategies, Priority Structures, Task

Management, Scheduler and Real –Time Clock Interrupt Handles, Memory Management ,Code

Sharing, Resource control, Task Co-operation and Communication, Mutual Exclusion

Module-5

Design of RTSS General Introduction:

Introduction, Specification documentation, Preliminary design, Single –Program Approach,

Foreground /Background, Multi- Tasking approach, Mutual Exclusion Monitors.

RTS Development Methodologies:

Introduction, Yourdon Methodology, Requirement definition For Drying Oven, Ward and Mellor

Method, Hately and Pirbhai Method.

BGSIT,Dept. Of ECE

Page 2

Real Time Systems 15EC743

Text Books:

1. Real –Time Computer control –An Introduction, Stuart Bennet, 2
nd

 Edn. Pearson

Education 2005.

Reference: Books:

1. Real-Time Systems Design and Analysis, Phillip. A. Laplante, Second Edition, PHI, 2005.

2. Embedded Systems, Raj kamal, Tata MC Graw Hill, INDIA, 2005.

BGSIT,Dept. Of ECE

Page 3

Real Time Systems 15EC743

CONTENTS

 NAME OF THE TOPICS PAGE NO

 Module 1: Introduction to Real – Time Systems 6-17

1 Historical Background 8

2 RTS Definition 10

3 Classification of Real – Time Systems 11

4 Time constraints 14

5 Classification of programs 16

 Module 1 :Concepts of Computers Control 18-44

6 Introduction 20

7 Sequence Control 23

8 Loop Control 27

9 Supervisory Control 30

10 Centralized Computer Control 36

11 Distributed System 38

12 Human-Computer interface 40

13 Benefits of Computer Control Systems 41

 Module 2: Computer Hardware Requirements for RTS 45-63

14 Introduction 43

15 General Purpose Computer 43

16 Single Chip Microcontroller 47

17 Specialized Processors 48

18 Process –Related Interfaces 50

19 Data Transfer Techniques 57

20 Communications 59

21 Standard Interface 61

BGSIT,Dept. Of ECE

Page 4

Real Time Systems 15EC743

 Module 3: Languages For Real –Time Applications 63-88

22 Introduction 64

23 Syntax Layout and Readability 68

24 Declaration and Initialization of Variables and Constants 70

25 Modularity and Variables 72

26 Compilation 75

27 Data Type 75

28 Control Structure 76

29 Exception Handling 77

30 Low –Level Facilities 79

31 Co routines 79

32 Interrupts and Device Handling 79

33 Concurrency 79

34 Real –Time Support 80

35 Overview of Real –Time Languages 80

 Module 4:Operating Systems 89-102

36 Introduction 81

37 Real –Time Multi –Tasking OS 83

38 Scheduling Strategies 85

39 Priority Structures 86

40 Task Management 90

41 Scheduler and Real –Time Clock Interrupt Handles 92

42 Memory Management 94

43 Code Sharing 95

44 Resource control 98

45 Task Co-operation and Communication 99

46 Mutual Exclusion 99

BGSIT,Dept. Of ECE

Page 5

Real Time Systems 15EC743

47 Data Transfer 99

48 Liveness 101

49 Minimum OS Kernel 101

50 Examples 101

 Module 5:Design of RTSS General Introduction 102-110

51 Introduction 103

52 Specification documentation 104

53 Preliminary design 104

54 Single –Program Approach 104

55 Foreground /Background 106

56 Multi- Tasking approach 108

57 Mutual Exclusion Monitors 109

 Module 5:RTS Development Methodologies 111-118

58 Introduction 112

59 Yourdon Methodology 113

60 Requirement definition For Drying Oven 114

61 Ward and Mellor Method 115

62 Hately and Pirbhai Method 117

BGSIT,Dept. Of ECE

Page 6

Real Time Systems 15EC743

MODULE – 1

Introduction to Real – Time Systems

Historical Background, RTS Definition, Classification of Real – Time Systems, Time constraints,

Classification of programs.

Recommended book for reading:

1. Real –Time Computer control –An Introduction, Stuart Bennet, 2
nd

 Edn. Pearson

Education 2005.

2. Real-Time Systems Design and Analysis, Phillip. A. Laplante, Second Edition, PHI, 2005.

Introduction to Real –Time Systems.

1.1 Historical Background:

The origin of the term Real –Time Computing is unclear. It was probably first used either

with project whirlwind, a flight simulator developed by IBM for the U.S. Navy in 1947, or with

SAGE, the Semiautomatic Ground Environment air defense system developed for the U.S. Air

force in the early 1950s. Modern real-time systems, such as those that control Nuclear Power

stations, Military Aircraft weapons systems, or Medical Monitoring Equipment, are complex and

they exhibit characteristics of systems developed from the 1940s through the 1960s. Moreover,

today’s real time systems exist because the computer industry and systems requirements grew.

The earliest proposal to use a computer operating in real time as part of a control system

was made in a paper by Brown and Campbell in 1950. It shows a computer in both the feedback

and feed forward loops. The diagram is shown below:

BGSIT,Dept. Of ECE

Page 7

Real Time Systems 15EC743

Figure: Computer used in control of plant.

The first digital Computers developed specifically for real time control were for airborne

operation, and in 1954 a digitrac digital computer was successfully used to provide an automatic

flight and weapons control system.

The application of digital computers to industrial control began in the late 1950s.

* The first industrial installation of a computer system was in September 1958. When the Louisiana

Power and Light Company installed a Day Storm Computer system for plant monitoring at their

power station in sterling, Louisiana.

* The first industrial Computer Control installation was made by the Texaco Company who

installed an RW-300 (Ramo -Wooldridge Company) system at their Port Arthur refinery in Texas.

* During 1957-8 the Monsanto Chemical Company, in co-operation with the Ramo-Wooldridge

company, studied the possibility of using computer control and in October 1958 decided to

implement a scheme on the ammonia plant at luling, Louisiana.

* The same system was installed by the B.F. Goodrich Company on their acrylanite plant at Calvert

City, Kentucky, in 1959-60.

* The first direct digital control (DDC) computer system was the Ferranti Argus 200 system

installed in November 1962 at the ICI ammonia – soda plant at Fleetwood Lancashire.

BGSIT,Dept. Of ECE

Page 8

Real Time Systems 15EC743

The computers used in the early 1960s combined magnetic core memories and drum stores,

the drum eventually giving way to hard disk drives. They included the General Electric 4000 series,

IBM 1800, CDC 1700, Foxboro Fox 1 and 1A, the SDS and Xerox SIGMA Series, Ferranti Argus

and Elliot Automation 900 series. The attempt to resolve some of the problems of the early

machines led to an increase in the cost of systems.

The consequence of the generation of further problems particularly in the development of

the software. The increase in the size of the programs meant that not all the code could be stored in

core memory; provision to be made for the swapping of code between the drum memory and core.

The solution appeared to lie in the development general purpose real-time operating systems and

high –level languages.

In the late 1960s real time operating system were developed and various PROCESS

FORTRAN Compilers made their appearance. The problems and the costs involved in attempting

to do everything in one computer led users to retreat to smaller system for which the newly

developing minicomputer (DEC PDP-8, PDP-11, Data General Nova, Honey well 316 etc.) was to

prove ideally suited.

1.2 REAL-TIME SYSTEM DEFINITION:

Real- time processing normally requires both parallel activities and fast response. In fact,

the term ‘real –time’ is often used synonymously with ‘multi – tasking’ or ‘multi- threading’.

Although there is no clear dividing line between real-time and non-real-time Systems, there

are a set of distinguishing features:

The oxford Dictionary of computing offers the definition:

Any system in which the time at which the output is produced is significant. This usually

because the input corresponded to some movement in the physical world, and output has to relate to

that same movement. The lag from input time to output time must be sufficiently small for acceptable

timeliness.

This definition covers a very wide range of systems; for examples, from workstations running

under the UNIX operating system from which the user expects to receive a response within a few

seconds through to aircraft engine control systems which must respond within a specified time and

failure to do so could cause the loss of control and possibly the loss of many lives.

BGSIT,Dept. Of ECE

Page 9

Real Time Systems 15EC743

Latter type of system cooling (1991) offers the definition:

Real- time systems are those which must produce correct responses within a

definite time limit.

An alternative definition is:

A real- time system read inputs from the plant and sends control signals to the plant

at times determined by plant operational considerations.

We can therefore define a real –time program as:

A program for which the correctness of operation depends both on the logical results of the

computation and the time at which the results are produced. One of the classification schema to

identify real-time.

Timing:

The most common definition of a real-time system involves a statement similar to ‘Real-time

systems are required to compute and deliver correct results within a specified period of time’. Does

this mean that a non-real-time system such as a payroll program, could point salary cheques two years

late, and be forgiven because it was not a real-time system? Hardly so! Obviously there are time

constraints on non-real-time systems too.

1.3 CLASSIFICATION OF REAL-TIME SYSTEM

A common feature of real-time systems and embedded computers is that the computer is

connected to the environment within which it is working by a wide range of interface device and

receives and sends a variety of stimuli. For example, the plant input, plant output, and

communication tasks shown in figure:

In below figure one common feature they are connected by physical devices to processor

which are external to computer. External processes all operate in their own time-scale and the

computer is said to operate in real time if actions carried out in the computer relate to the time –

scales of the external processes. Synchronization between the external processes and the internal

actions (tasks) carried out by the computer may be defined in term of the passage of time, or the

actual time of day, in which case the system is said to be clock based the operations are carried out

according to a time schedule.

BGSIT,Dept. Of ECE

Page 10

Real Time Systems 15EC743

Other category, interactive, in which the relationship between the actions in the computer

and the system is much more loosely defined. The control tasks, although not obviously and

directly connected to the external environment, also need to operate in real -time, since time is

usually involved in determining the parameters of the algorithms.

BGSIT,Dept. Of ECE

Page 11

Real Time Systems 15EC743

1.3.1 CLOCK – BASED TASKS (CYCLIC, PERIODIC):

Clock – based tasks are typically referred to as cyclic or periodic tasks where the terms can

imply either that the task is to run once per time period T (or cycle time T), or is to run at exactly T

unit intervals.

The completion of the operations within the specified time is dependent on the number of

operations to be performed and the speed of the computer.

Synchronization is usually obtained by adding a clock to the computer system- referred as a real-

time clock that uses signal from this clock to interrupt the operations of the computer at some

predetermined fixed time interval.

For example in process plant operation, the computer may carry out the plant input, plant

output and control tasks in response to the clock interrupt or, if the clock interrupt has been set at a

faster rate than the sampling rate, it may count each interrupt until it is time to run the tasks.

In larger system the tasks may be subdivided into groups for controlling different parts of

the plant and these may need to run a different sampling rate. A tasks or process comprises some

code, its associated data and a control block data structure which the operating system uses to

define and manipulate the task.

1.3.2 EVENT – BASED TASKS (APERIODIC):

Events occurring at non-deterministic interval and event-based tasks are frequently referred

as aperiodic tasks. Such tasks may have deadlines expressed in term of having start times or finish

times (or even both).

For example, a task may be required to start within 0.5 seconds of an event occurring, or

alternatively it may have to produce an output (end time) within 0.5 seconds of the events. For

many system where actions have to be performed not at particular times or time intervals but in

response to some event.

Examples: Turning off a pump or closing a value when the level of a liquid in a tank reaches a

predetermined valve; or switching a motor off in response to the closure of a micro switch

indicating that some desired position has been reached.

Event based systems are also used extensively to indicate alarm conditions and initiate alarm

actions.

BGSIT,Dept. Of ECE

Page 12

Real Time Systems 15EC743

1.3.3 INTERACTIVE SYSTEM:

Interactive systems probably represent the largest class of real-time systems and cover such

systems as automatic bank tellers; reservation systems for hotels, airlines and car rental companies;

computerized tills, etc. The real-time requirement is usually expressed in terms such as 'the average

response time must not exceed ... ‘

For example, an automatic bank teller system might require an average response time not

exceeding 20 seconds. Superficially this type of system seems similar to the event-based system in

that it apparently responds to a signal from the plant (in this case usually a person), but it is different

because it responds at a time determined by the internal state of the computer and without any

reference to the environment. An automatic bank teller does not know that you are about to miss a

train, or that it is raining hard and you are getting wet: its response depends on how busy the

communication lines and central computers are (and of course the wire of your account).

Many interactive systems give the impression that they are clock based in that they are

capable of displaying the date and time; they do indeed have a real-time clock which enables them to

keep track of time.

1.4 TIME CONSTRAINTS:

Real time systems are divided into two categories:

• Hard real-time: these are systems that must satisfy the deadlines on each

and every occasion.

• Soft real-time: these are systems for which an occasional failure to meet

a deadline does not comprise the correctness of the system.

A typical example of a hard real-time control system is the temperature control loop of the hot-air

blower system described above. In control terms, the temperature loop is a sampled data system.

Design, of a suitable control algorithm for this system involves the choice of the sampling interval Ts.

If we assume that a suitable sampling interval is 10 ms, then at 10 ms intervals the input value must

be read, the control calculation carried out and the output value calculated, and the output value sent

to the heater drive.

As an example of hard time constraints associated with event-based tasks let us assume that

the hot-air blower is being used to dry a component which will be damaged if exposed to

BGSIT,Dept. Of ECE

Page 13

Real Time Systems 15EC743

temperatures greater than 50°C for more than 10 seconds. Allowing for the time taken for the air to

travel from the heater to the outlet and the cooling time of the heater element - and for a margin of

safety - the alarm response requirement may be, say, that overt temperature should be detected and

the heater switched off within seven seconds of the over temperature occurring. The general form of

this type of constraint is that the computer must respond to the event within some specified maximum

time.

An automatic bank teller provides an example of a system with a soft time constraint. A

typical system is event initiated in that it is started by the customer placing their card in the machine.

The time constraint on the machine responding will be specified in terms of an average response time

of, say, 10 seconds, with the average being measured over a 24 hour period. (Note that if the system

has been carefully specified there will also be a maximum time; say 30 seconds, within which the

system should respond.) The actual response time will vary: if you have used such a system you will

have learned that the response time obtained between 12 and 2 p.m. on a Friday is very different from

that at 10 a.m. on a Sunday.

A hard time constraint obviously represents a much more severe constraint on the

performance of the system than a soft time constraint and such systems present a difficult challenge

both to hardware and to software designers. Most real-time systems contain a mixture of activities

that can be classified as clock based, event based, and interactive with both hard and soft time

constraints (they will also contain activities which are not real time). A system designer will attempt

to reduce the number of activities (tasks) that are subject to a hard time constraint.

Formally the constraint is defined as follows:

tc (i) the interval between the i and i-I cycles,

te (i) the response time to the ith occurrence of event e,

ts the desired periodic (cyclic) interval,

BGSIT,Dept. Of ECE

Page 14

Real Time Systems 15EC743

Te

Ta

the maximum permitted response time to event e,

the average permitted response time to event e measured over

some time interval T,

n the number of occurrences of event e within the time interval T,

or the number of cyclic repetitions during the time interval T,

a a small timing tolerance.

For some systems and tasks the timing constraints may be combined in some

form or other, or relaxed in some way.

1.5 CLASSIFICATION OF PROGRAMS:

The importance of separating the various activities carried out by computer control systems

into real-time and non-real-time tasks, and in subdividing real-time tasks into the two different types,

arises from the different levels of difficulty of designing and implementing the different types of

computer program. Experimental studies have shown clearly that certain types of program,

particularly those involving real time and interface operations, are substantially more difficult to

construct than, for instance, standard data processing programs (Shooman, 1983; Pressman,

1992).The division of software into small, coherent modules is an important design technique and one

of the guidelines for module division that we introduce is to put activities with different types of time

constraints into separate modules.

Theoretical work on mathematical techniques for proving the correctness of a program, and

the development of formal specification languages, such as 'z' and VOM, has clarified the

understanding of differences between different types of program. Pyle (1979), drawing on the work

of Wirth (1977), presented definitions identifying three types of programming:

• Sequential;

• Multi-tasking; and

• Real-time.

The definitions are based on the kind of arguments which would have to be made in order to verify,

that is to develop a formal proof of correctness for programs of each type.

1.5.1 SEQUENTIAL:

BGSIT,Dept. Of ECE

Page 15

Real Time Systems 15EC743

In classical sequential programming actions are strictly ordered as a time sequence: the

behavior of the program depends only on the effects of the individual actions and their order; the

time taken to perform the action is not of consequence. Verification, therefore, requires two kinds of

argument:

1. That a particular statement defines a stated action; and

2. That the various program structures produce a stated sequence of events.

1.5.2 MULTI-TASKING:

A multi-task program differs from the classical sequential program in that the actions it is

required to perform are not necessarily disjoint in time; it may be necessary for several actions to be

performed in parallel. Note that the sequential relationships between the actions may still be

important. Such a program may be built from a number of parts (processes or tasks are the names

used for the parts) which are themselves partly sequential, but which are executed concurrently and

which communicate through shared variables and synchronization signals.

Verification requires the application of arguments for sequential programs with some additions. The

task (processes) can be verified separately only if the constituent variables of each task (process) are

distinct. If the variables are shared, the potential concurrency makes the effect of the program

unpredictable (and hence not capable of verification) unless there is some further rule that governs the

sequencing of the several actions of the tasks (processes). The task can proceed at any speed: the

correctness depends on the actions of the synchronizing procedure.

1.5.3 REAL-TIME:

A real-time program differs from the previous types in that, in addition to its actions not

necessarily being disjoint in time, the sequence of some of its actions is not determined by the

designer but by the environment - that is, by events occurring in the outside world which occur in real

time and without reference to the internal operations of the computer. Such events cannot be made to

conform to the intertask synchronization rules.

A real-time program can still be divided into a number of tasks but communication between

the tasks cannot necessarily wait for a synchronization signal: the environment task cannot be

delayed. (Note that in process control applications the main environment task is usually that of

keeping real time, that is a real-time clock task. It is this task which provides the timing for the

BGSIT,Dept. Of ECE

Page 16

Real Time Systems 15EC743

scanning tasks which gather information from the outside world about the process.) In real-time

programs, in contrast to the two previous types of program, the actual time taken by an action is an

essential factor in the process of verification. We shall assume that we are concerned with real-time

software and references to sequential and multi-tasking programs should be taken to imply that the

program is real time. Non-real-time programs will be referred to as standard program.

Consideration of the types of reasoning necessary for the verification of programs is

important, not because we, as engineers, are seeking a method of formal proof, but because we are

seeking to understand the factors which need to be considered when designing real-time software.

Experience shows that the design of real-time software is significantly more difficult than the design

of sequential software. The problems of real-time software design have not been helped by the fact

that the early high-level languages were sequential in nature and they did not allow direct access to

many of the detailed features of the computer hardware.

As a consequence, real-time features had to be built into the operating system which was

written in the assembly language of the machine by teams of specialist programmers. The cost of

producing such operating systems was high and they had therefore to be general purpose so that they

could be used in a wide range of applications in order to reduce the unit cost of producing them.

These operating systems could be tailored, that is they could be reassembled to exclude or include

certain features, for example to change the number of tasks which could be handled, or to change the

number of input/output devices and types of device. Such changes could usually only be made by the

supplier.

Excepted Question:

1. Explain the difference between a real-time program and a non-real-time program.

Why are real-time programs more difficult to verify than non-real-time programs?

2 To design a computer-based system to control all the operations of a retail petrol

(gasoline) station (control of pumps, cash receipts, sales figures, deliveries, etc.).

What type of real-time system would you expect to use?

3. Classify any of the following systems as real-time?

In each case give reasons for your answer and classify the real-time systems

as hard or soft.

(a) A simulation program run by an engineer on a personal computer.

BGSIT,Dept. Of ECE

Page 17

Real Time Systems 15EC743

(b) An airline seat-reservation system with on-line terminals.

(c) A microprocessor-based automobile ignition and fuel injection system.

(d) A computer system used to obtain and record measurements of force and strain from

a tensile strength testing machine.

e) An aircraft autopilot.

4 An automatic bank teller works by polling each teller in turn. Some tellers are located

outside buildings and others inside. How the polling system could be organized to ensure

that the waiting time at the outside locations was less than at the inside locations?

5 .Explain the precision required for the analog-to-digital and digital-to-analog converters taking hot-

air blower as an example?

BGSIT,Dept. Of ECE

Page 18

Real Time Systems 15EC743

MODULE– 1

Concepts of Computers Control

Introduction, Sequence Control, Loop Control, Supervisory Control, Centralized Computer Control,

Distributed System, Human-Computer interface, Benefits of Computer Control Systems.

Recommended book for reading:

1. Real –Time Computer control –An Introduction, Stuart Bennet, 2
nd

 Edn. Pearson

Education 2005.

2. Real-Time Systems Design and Analysis, Phillip. A. Laplante, Second Edition, PHI, 2005.

2.1 Concepts of computers control:

Introduction:

Computers are now used in so many different ways that we could take it up by simply

describing various applications. However, when we examine the applications closely we find that

there are many common features. The basic features of computer control systems are illustrated in the

following sections using examples drawn from industrial process control. In this field applications are

typically classified under the following headings:

• Batch;

• Continuous; and

• Laboratory (or test).

The categories are not mutually exclusive: a particular process may involve activities which fall into

more than one of the above categories; they are, however, useful for describing the general character

of a particular process.

BATCH:

BGSIT,Dept. Of ECE

Page 19

Real Time Systems 15EC743

The term batch is used to describe processes in which a sequence of operations are carried out

to produce a quantity of a product - the batch - and in which the sequence is then repeated to produce

further batches. The specification of the product or the exact composition may be changed between

the different runs.

A typical example of batch production is rolling of sheet steel. An ingot is passed through the

rolling mill to produce a particular gauge of steel; the next ingot may be either of a different

composition or rolled to a different thickness and hence will require different settings of the rolling

mill.

An important measure in batch production is set-up time (or change-over time), that is, the

time taken to prepare the equipment for the next production batch. This is wasted time in that no

output is being produced; the ratio between operation time (the time during which the product is

being produced) and set-up time is important in determining a suitable batch size.

In mechanical production the advent of the NC (Numerically Controlled) machine tool which

can be set up in a much shorter time than the earlier automatic machine tool has led to a reduction in

the size of batch considered to be economic.

CONTINUOUS:

The term continuous is used for systems in which production is maintained for long periods of

time without interruption, typically over several months or even years. An example of a continuous

system is the catalytic cracking of oil in which the crude oil enters at one end and the various

products - fractionates – are removed as the process continues. The ratio of the different fractions can

be changed but this is done without halting the process.

Continuous systems may produce batches, in that the product composition may be changed

from time to time, but they are still classified as continuous since the change in composition is made

without halting the production process.

A problem which occurs in continuous processes is that during change-over from one

specification to the next, the output of the plant is often not within the product tolerance and must be

scrapped. Hence it is financially important that the change be made as quickly and smoothly as

possible. There is a trend to convert processes to continuous operation - or, if the whole process

cannot be converted, part of the process.

BGSIT,Dept. Of ECE

Page 20

Real Time Systems 15EC743

For example, in the baking industry bread dough is produced in batches but continuous ovens

are frequently used to bake it whereby the loaves are placed on a conveyor which moves slowly

through the oven. An important problem in mixed mode systems, that is systems in which batches are

produced on a continuous basis, is the tracking of material through the process; it is obviously

necessary to be able to identify a particular batch at all times.

LABORATORY SYSTEMS:

Laboratory-based systems are frequently of the operator-initiated type in that the computer is

used to control some complex experimental test or some complex equipment used for routine testing.

A typical example is the control and analysis of data from a vapour phase chromatograph.

Another example is the testing of an audiometer, a device used to lest hearing. The

audiometer has to produce sound levels at different frequencies; it is complex in that the actual level

produced is a function of frequency since the sensitivity of the human ear varies with frequency. Each

audiometer has to be tested against a sound-level meter and a test certificate produced. This is done

by using a sound-level meter connected to a computer and using the output from the computer to

drive the audiometer through its frequency range. The results printed out from the test computer

provide the test certificate.

As with attempts to classify systems as batch or continuous so it can be difficult at times to

classify systems solely as laboratory. The production of steel using the electric arc furnace involves

complex calculations to determine the appropriate mix of scrap, raw materials and alloying additives.

As the melt progresses samples of the steel are taken and analyzed using a spectrometer. Typically

this instrument is connected to a computer which analyses the results and calculates the necessary

adjustment to the additives. The computer used may well be the computer which is controlling the arc

furnace itself.

In whatever way the application is classified the activities being carried out will include:

• Data acquisition;

• Sequence control;

• Loop control (DDC);

• Supervisory control;

• Data analysis;

• Data storage; and

BGSIT,Dept. Of ECE

Page 21

Real Time Systems 15EC743

• Human-computer interfacing (HCI).

• Efficiency of operation;

• Ease of operation;

• Safety;

•Improved products;

• Reduction in waste;

• Reduced environmental impact; and

• A reduction in direct labour.

GENERAL EMBEDDED SYSTEMS:

In the general range of systems which use embedded computers – from domestic appliances,

through hi-fi systems, automobile management systems, intelligent instruments, active control of

structures, to large flexible manufacturing systems and aircraft control systems - we will find that the

activities that are carried out in the computer and the objectives of using a computer are similar to

those listed above. The major differences will lie in the balance between the different activities, the

time-scales involved, and the emphasis given to the various objectives.

2.2 SEQUENCE CONTROL:

Although sequence control occurs in some part of most systems it often predominates in batch

systems and hence a batch system is used to illustrate it. Batch systems are widely used in the food

processing and chemical industries where the operations carried out frequently involve mixing raw

materials, carrying out some process, and then discharging the product. A typical reactor vessel for

this purpose is shown in Figure 2.1 below.

BGSIT,Dept. Of ECE

Page 22

Real Time Systems 15EC743

Figure2.1: A simple chemical reactor vessel

A chemical is produced by the reaction of two other chemicals at a specified temperature. The

chemicals are mixed together in a sealed vessel (the reactor) and the temperature of the reaction is

controlled by feeding hot or cold water through the water jacket which surrounds the vessel.

The water flow is controlled by adjusting valves C and D. The flow of material into and out of

the vessel is regulated by the valves A, Band E. The temperature of the contents of the vessel and the

pressure in the vessel are monitored.

The procedure for the operation of the system may be as follows:

1. Open valve A to charge the vessel with chemical 1.

2. Check the level of the chemical in the vessel (by monitoring the pressure in the

vessel); when the correct amount of chemical has been admitted, close valve A.

3. Start the stirrer to mix the chemicals together.

4. Repeat stages 1 and 2 with valve B in order to admit the second chemical.

5. Switch on the three-term controller and supply a set point so that the chemical mix

is heated up to the required reaction temperature.

6. Monitor the reaction temperature; when it reaches the set point, start a timer to

BGSIT,Dept. Of ECE

Page 23

Real Time Systems 15EC743

time the duration of the reaction.

7. When the timer indicates that the reaction is complete, switch off the controller

and open valve C to cool down the reactor contents. Switch off the stirrer.

8. Monitor the temperature; when the contents have cooled, open valve E to

remove the product from the reactor.

When implemented by computer all of the above actions and timings would be based upon

software. For a large chemical plant such sequences can become very lengthy and intricate and, to

ensure efficient operating, several sequences may take place in parallel.

The processes carried out in the single reactor vessel shown in Figure 2.1 are often only part

of a larger process as is shown in Figure 2.2. In this plant two reactor vessels (R 1 and R2) are used

alternately, so that the processes of preparing for the next batch and cleaning up after a batch can be

carried out in parallel with the actual production. Assuming that R 1 has been filled with the mixture

and the catalyst, and the reaction is in progress, there will be for R 1: loop control of the temperature

and pressure; operation of the stirrer; and timing of the reaction (and possibly some in process

measurement to determine the state of the reaction). In parallel with this, vessel R2 will be cleaned -

the wash down sequence - and the next batch of raw material will be measured and mixed in the

mixing tank.

Meanwhile, the previous batch will be thinned down and transferred to the appropriate storage

tank and, if there is to be a change of product or a change in product quality, the thin-down tank will

be cleaned. Once this is done the next batch can be loaded into R2 and then, assuming that the

reaction in R1 is complete, the contents of R1 will be transferred to the thin-down tank and the wash

down procedure for R1 initiated. The various sequences of operations required can become complex

and there may also be complex decisions to be made as to when to begin a sequence. The sequence

initiation may be left to a human operator or the computer may be programmed to supervise the

operations (supervisory control - see below). The decision to use human or computer supervision is

often very difficult to make.

The aim is usually to minimize the time during which the reaction vessels are idle since this is

unproductive time. The calculations needed and the evaluation of options can be complex,

particularly if, for example, reaction times vary with product mix, and therefore it would be expected

that decisions made using computer supervisory control would give the best results. however, it is

difficult using computer control to obtain the same flexibility that can be achieved using a human

BGSIT,Dept. Of ECE

Page 24

Real Time Systems 15EC743

operator (and to match the ingenuity of good operators). As a consequence many supervisory systems

are mixed; the computer is programmed to carry out the necessary supervisory calculations and to

present its decisions for confirmation or rejection by the operator, or alternatively it presents a range

of options to the operator.

In most batch systems there is also, in addition to the sequence control, some continuous

feedback control: for example, control of temperatures, pressures, flows, speeds or currents. In

process control terminology continuous feedback control is referred to as loop control or modulating

control and in modern systems this would be carried out using DOC.

Figure2.2: Typical chemical batch process.

A similar mixture of sequence, loop and supervisory control can be found in continuous

systems. Consider the float glass process shown in Figure 2.3. The raw material - sand, powdered

glass and fluxes (the frit) - is mixed in batches and fed into the furnace. It melts rapidly to form a

BGSIT,Dept. Of ECE

Page 25

Real Time Systems 15EC743

molten mixture which flows through the furnace. As the molten glass moves through the furnace it is

refined. The process requires accurate control of temperature in order to maintain quality and to keep

fuel costs to a minimum - heating the furnace to a higher temperature than is necessary wastes energy

and increases costs. The molten glass flows out of the furnace and forms a ribbon on the float bath;

again, temperature control is important as the glass ribbon has to cool sufficiently so that it can pass

over rollers without damaging its surface.

The continuous ribbon passes into the lehr where it is annealed and where temperature control

is again required. It then passes under the cutters which cut it into sheets of the required size;

automatic stackers then lift the sheets from the production line. The whole of this process is

controlled by several computers and involves loop, sequence and supervisory control. Sequence

control systems can vary from the large - the start-up of a large boiler turbine unit in a power station

when some 20000 operations and checks may have to be made - to the small - starting a domestic

washing machine. Most sequence control systems are simple and frequently have no loop control.

They are systems which in the past would have been controlled by relays, discrete logic, or integrated

circuit logic units. Examples are simple presses where the sequence might be: locate blank, spray

lubricant, lower press, raise press, remove article, spray lubricant. special computer systems known as

programmable logic controllers (PLCs).

Figure 2.3: Schematic of float glass process.

BGSIT,Dept. Of ECE

Page 26

Real Time Systems 15EC743

2.3 LOOP CONTROL (DIRECT DIGITIAL CONTROL):

In direct digital control (DDC) the computer is in the feedback loop as is shown in Figure 2.4.,

the system shown in Figure 2.4 is assumed to involve several control loops all of which are handled

within one computer.

A consequence of the computer being in the feedback loop is that it forms a critical

component in terms of the reliability of the system and hence great care is needed to ensure that, in

the event of the failure or malfunctioning of the computer, the plant remains in a safe condition. The

usual means of ensuring safety are to limit the DDC unit to making incremental changes to the

actuators on the plant; and to limit the rate of change of the actuator settings (the actuators are labeled

A in Figure 2.4).

Figure 2.4: Direct digital control.

The advantages claimed for DDC over analog control are:

1. Cost - a single digital computer can control a large number of loops. In the early days the break-

even point was between 50 and 100 loops, but now with the introduction of microprocessors a single-

loop DDC unit can be cheaper than an analog unit.

BGSIT,Dept. Of ECE

Page 27

Real Time Systems 15EC743

2. Performance - digital control offers simpler implementation of a wide range of control algorithms,

improved controller accuracy and reduced drift.

3. Safety - modern digital hardware is highly reliable with long mean-time between- failures and

hence can improve the safety of systems. However, the software used in programmable digital

systems may be much less reliable than the hardware.

The development of integrated circuits and the microprocessor have ensured that in terms of

cost the digital solution is now cheaper than the analog. Single-loop controllers used as stand-alone

controllers are now based on the use of digital techniques and contain one or more microprocessor

chips which are used to implement DDC algorithms. The adoption of improved control algorithms

has, however, been slow. Many computer control implementations have simply taken over the well-

established analog PID (Proportional + Integral + Derivative) algorithm.

PID CONTROL:

The PID control algorithm has the general form

m(t) = Kp [e(t) + 1/Ti ∫0
1 e(t)dt + Td de(t)/dt]

Where e (t) = r (t) - c (t) and c (t) is the measured variable, r (i) is reference value or set point, and e

(t) is error; Kp is the overall controller gain; T; is the integral action time; and Td is the derivative

action time.

For a wide range of industrial processes it is difficult to improve on the control performance

that can be obtained by using either PI or PID control (except at considerable expense) or it is for this

reason that the algorithms are widely used. For the majority of systems PI control is all that is

necessary. Using a control signal that is made proportional to the error between the desired value of

an output and the actual value of the output is an obvious and (hopefully) a reasonable strategy.

Choosing the value of Kp involves a compromise: a high value of Kp gives a small steady-state error

and a fast response, but the response will be oscillatory and may be unacceptable in many

applications; a low value gives a slow response and a large steady-state error. By adding the integral

action term the steady-state error can be reduced to zero since the integral term, as its name implies,

integrates the error signal with respect to time. For a given error value the rate at which the integral

term increases is determined by the integral action time Ti. The major advantage of incorporating an

integral term arises from the fact that it compensates for changes that occur in the process being

controlled.

BGSIT,Dept. Of ECE

Page 28

Real Time Systems 15EC743

A purely proportional controller operates correctly only under one particular set of process

conditions: changes in the load on the process or some environmental condition will result in a

steady-state error; the integral term compensates for these changes and reduces the error to zero. For

a few processes which are subjected to sudden disturbances the addition of the derivative term can

give improved performance. Because derivative action produces a control signal that is related to the

rate of change of the error signal, it anticipates the error and hence acts to reduce the error that would

otherwise arise from the disturbance.

In fact, because the PID controller copes perfectly adequately with 90070 of all control

problems, it provides a strong deterrent to the adoption of new control system design techniques.

DDC may be applied either to a single-loop system implemented on a small microprocessor or to a

large system involving several hundred loops. The loops may be cascaded, that is with the output or

actuation signal of one loop acting as the set point for another loop, signals may be added together

(ratio loops) and conditional switches may be used to alter signal connections.

A typical industrial system is shown in Figure 2.5. This is a steam boiler control system. The

steam pressure is controlled by regulating the supply of fuel oil to the burner, but in order to comply

with the pollution regulations a particular mix of air and fuel is required. We are not concerned with

how this is achieved but with the elements which are required to implement the chosen control

system.

Figure 2.5: A boiler control scheme.

BGSIT,Dept. Of ECE

Page 29

Real Time Systems 15EC743

DDC APPLICATIONS:

DDC may be applied either to a single-loop system implemented on a small microprocessor or

to a large system involving several hundred loops. The loops may be cascaded, that is with the output

or actuation signal of one loop acting as the set point for another loop, signals may be added together

(ratio loops) and conditional switches may be used to alter signal connections. A typical industrial

system is shown in Figure 2.5. This is a steam boiler control system.

The steam pressure control system generates an actuation signal which is fed to an

auto/manual bias station. If the station is switched to auto then the actuation signal is transmitted; if it

is in manual mode a signal which has been entered manually (say, from keyboard) is transmitted. The

signal from the bias station is connected to two units, a high signal selector and a low signal selector

each of which has two inputs and one output. The signal from the low selector provides the set point

for the DDC loop controlling the oil flow, the signal from the high selector provides the set point for

the air flow controller (two cascade loops). A ratio unit is installed in the air flow measurement line.

DDC is not necessarily limited to simple feedback control as shown in Figure 2.6. It is

possible to use techniques such as inferential, feed forward and adaptive or self-tuning control.

Inferential control, illustrated in Figure 2.7, is the term applied to control where the variables on

which the feedback control is to be based cannot be measured directly, but have to be 'inferred' from

measurements of some other quantity.

Figure 2.6: General structure of feedback control configuration.

BGSIT,Dept. Of ECE

Page 30

Real Time Systems 15EC743

Figure 2.7: General control of inferential control configurations.

ADAPTIVE CONTROL:

Adaptive control can take several forms. Three of the most common are:

• Preprogrammed adaptive control (gain 5cheduled control);

• Self-tuning; and

• Model-reference adaptive control.

Programmed adaptive control is illustrated in Figure 2.10a. The adaptive, or adjustment,

mechanism makes preset changes on the basis of changes in auxiliary process measurements. For

example, in a reaction vessel a measurement of the level of liquid in the vessel (an indicator of the

volume of liquid in the vessel) might be used to change the gain of the temperature controller; in

many aircraft controls the measured air speed is used to select controller parameters according to a

preset schedule.

An alternative form is shown in Figure 2.10b in which measurements of changes in the

external environment are used to select the gain or other controller parameters. For example, in an

aircraft auto stabilizer, control parameters may be changed according to the external air pressure.

BGSIT,Dept. Of ECE

Page 31

Real Time Systems 15EC743

Figure2.10 Programmed adaptive control (gain scheduled):

(a) Auxiliary process measurements; (b) External environment (open loop).

Another example is the use of measurements of external temperature and wind velocities to

adjust control parameters for a building environment control system. Adaptive control using self-

tuning is illustrated in Figure 2.11 and uses identification techniques to achieve continual

determination of the parameters of the process being controlled; changes in the process parameters

are then used to adjust the actual controller. An alternative form of self-tuning is frequently found in

commercial PID controllers (usually called auto tuning). The comparison may be based on a simple

measure such as percentage overshoot or some more complex comparators. The model reference

technique is illustrated in Figure 2.12; it relies on the ability to construct an accurate model of the

process and to measure the disturbances which affect the process.

BGSIT,Dept. Of ECE

Page 32

Real Time Systems 15EC743

Figure 2.11: Self-tuning adaptive control.

Figure 2.12: Model-reference adaptive control.

2.4 SUPERVISORY CONTROL:

The adoption of computers for process control has increased the range of activities that can be

performed, for not only can the computer system directly control the operation of the plant, but also it

can provide managers and engineers with a comprehensive picture of the status of the plant

operations. It is in this supervisory role and in the presentation of information to the plant operator -

large rooms full of dials and switches have been replaced by VDUs and keyboards - that the major

BGSIT,Dept. Of ECE

Page 33

Real Time Systems 15EC743

changes have been made: the techniques used in the basic feedback control of the plant have changed

little from the days when pneumatically operated three-term controllers were the norm. Direct digital

control (DDC) is often simply the computer implementation of the techniques used for the traditional

analog controllers.

Many of the early computer control schemes used the computer in a supervisory role and not

for DDC. The main reasons for this were (a) computers in the early days were not always very

reliable and caution dictated that the plant should still be able to run in the event of a computer

failure; (b) computers were very expensive and it was not economically viable to use a computer to

replace the analog control equipment in current use. A computer system that was used to adjust the

set points of the existing analog control system in an optimum manner (to minimize energy or to

maximize production) could perhaps be economically justified. The basic idea of supervisory control

is illustrated in Figure 2.13 (compare this with Figure 2.4).

Figure 2.13: Supervisory control.

An example of supervisory control is shown in Figure 2.14. Two evaporators are connected in

parallel and material in solution is fed to each unit. The purpose of the plant is to evaporate as much

water as possible from the solution. Steam is supplied to a heat exchanger linked to the first

evaporator and the steam for the second evaporator is supplied from the vapours boiled off from the

first stage. To achieve maximum evaporation the pressures in the chambers must be as high as safety

permits. However, it is necessary to achieve a balance between the two evaporators; if the first is

BGSIT,Dept. Of ECE

Page 34

Real Time Systems 15EC743

driven at its maximum rate it may generate so much steam that the safety thresholds for the second

evaporator are exceeded.

A supervisory control scheme can be designed to balance the operation of the two evaporators

to obtain the best overall evaporation rate. Most applications of supervisory control are very simple

and are based upon knowledge of the steady-state characteristics of the plant. In a few systems

complex control algorithms have been used and have been shown to give increased plant profitability.

The techniques used have included optimization based on hill climbing, linear programming

and simulations involving complex non-linear models of plant dynamics and economics.

Figure 2.14: An evaporation plant.

2.5 CENTRALISED COMPUTER CONTROL:

Throughout most of the 1960s computer control implied the use of one central computer for

the control of the whole plant. The reason for this was largely financial: computers were expensive.

From the previous sections it should now be obvious that a typical computer-operation process

involves the computer in performing many different types of operations and tasks. Although a general

BGSIT,Dept. Of ECE

Page 35

Real Time Systems 15EC743

purpose computer can be programmed to perform all of the required tasks the differing time-scales

and security requirements for the various categories of task make the programming job difficult,

particularly with regard to the testing of software. For example, the feedback loops in a process may

require calculations at intervals measured in seconds while some of the alarm and switching systems

may require a response in less than 1 second; the supervisory control calculations may have to be

repeated at intervals of several minutes or even hours; production management will want summaries

at shift or daily intervals; and works management will require weekly or monthly analyses.

Interrelating all the different time-scales can cause serious difficulties.

A consequence of centralized control was the considerable resistance to the use of DOC

schemes in the form shown in Figure 2.4; with one central computer in the feedback loop, failure of

the computer results in the loss of control of the 'whole plant. In the 1960s computers were not very

reliable: the mean-time-to-failure of the computer hardware was frequently of the order of a few

hours and to obtain a mean-time-to-failure of 3 to 6 months for the whole system required defensive

programming to ensure that the system could continue running in a safe condition while the computer

was repaired. Many of the early schemes were therefore for supervisory control as shown in Figure

2.13. However, in the mid 1960s the traditional process instrument companies began to produce

digital controllers with analog back-up. These units were based on the standard analog controllers but

allowed a digital control signal from the computer to be passed through the controller to the actuator:

the analog system tracked the signal and if the computer did not update the controller within a

specified (adjustable) interval the unit dropped on to local analog control. This scheme enabled DDC

to be used with the confidence that if the computer failed, the plant could still be operated. The cost,

however, was high in that two complete control systems had to be installed.

By 1970 the cost of computer hardware had reduced to such an extent that it became feasible

to consider the use of dual computer systems (Figure 2.15). Here, in the event of failure of one of the

computers, the other takes over. In some schemes the change-over is manual, in others automatic

failure detection and change-over is incorporated. Many of these schemes are still in use. They do,

however, have a number of weaknesses: cabling and interface equipment is not usually duplicated,

neither is the software - in the sense of having independently designed and constructed programs - so

that the lack of duplication becomes crucial. Automatic failure and change-over equipment when used

becomes in itself a critical component. Furthermore, the problems of designing, programming, testing

and maintaining the software are not reduced: if anything they are further complicated in that

BGSIT,Dept. Of ECE

Page 36

Real Time Systems 15EC743

provision for monitoring ready for change-over has to be provided. The continued reduction of the

cost of hardware and the development of the microprocessor has made multi-computer systems

feasible. These fall into two types:

1. Hierarchical - Tasks are divided according to function, for example with one computer performing

DDC calculations and being subservient to another which performs supervisory control.

2. Distributed - Many computers perform essentially similar tasks in parallel.

Figure 2.15: Dual computer scheme.

2.6 DISTRIBUTED SYSTEMS:

The underlying assumptions of the distributed approach are:

BGSIT,Dept. Of ECE

Page 37

Real Time Systems 15EC743

1. Each unit is carrying out essentially similar tasks to all the other units; and

2. In the event of failure or overloading of a particular unit all or some of the work can be transferred

to other units.

In other words, the work is not divided by function and allocated to a particular computer as in

hierarchical systems: instead, the total work is divided up and spread across several computers. This

is a conceptually simple and attractive approach - many hands make light work - but it poses difficult

hardware and software problems since, in order to gain the advantages of the approach, allocation of

the tasks between computers has to be dynamic, that is there has to be some mechanism which can

assess the work to be done and the present load on each computer in order to allocate work. Because

each computer needs access to all the information in the system, high-bandwidth data highways are

necessary. There has been considerable progress in developing such highways and the various types

are discussed below:

Computer scientists and engineers are also carrying out considerable research on multi-

processor computer systems and this work could lead to totally distributed systems becoming

feasible. There is also a more practical approach to distributing the computing load whereby no

attempt is made to provide for the dynamic allocation of resources but

instead a simple ad hoc division is adopted with, for example, one computer performing all non-plant

input and output, one computer performing all DDC calculations, another performing data acquisition

and yet another performing the control of the actuators. In most modern schemes a mixture of

distributed and hierarchical approaches is used as shown in Figure 2.19. The tasks of measurement,

DDC, operator communications, etc., are distributed among a number of computers which are linked

together via a common serial communications highway and are configured in a hierarchical command

structure. Five broad divisions of function are shown:

Level 1 all computations and plant interfacing associated with measurement and actuation. This level

provides a measurement and actuation database for the whole system.

Level 2 All DDC calculations.

Level 3 all sequence calculations.

Level 4 Operator communications.

Level 5 Supervisory control

Level 6 Communications with other computer systems.

BGSIT,Dept. Of ECE

Page 38

Real Time Systems 15EC743

It is not necessary to preserve rigid boundaries; for example, a DDC unit may perform some

sequencing or may interface directly to plant.

Figure 2.16: A distributed system.

The major advantages of this approach are:

1. The system capabilities are greatly enhanced by the sharing of tasks between processors - the

burden of computation for a single processor becomes very great if all of the described control

BGSIT,Dept. Of ECE

Page 39

Real Time Systems 15EC743

features are included. One of the main computing loads is that of measurement scanning, filtering and

scaling, not because anyone calculation is onerous but because of the large number of signals

involved and the frequency at which the calculations have to be repeated. Separation of this aspect

from the DDC, even if only into two processors, greatly enhances the number of control loops that

can be handled. The DDC computer will collect measurements, already processed, via the

communications link at a much lower frequency than that at which the measurement computer

operates.

2. The system is much more flexible than the use of a single processor: if more loops are required or

an extra operator station is needed, all that is necessary is to add more boxes to the communication

link - of course the other units on the link will need to be updated to be aware of the additional items.

It also allows standardization, since it is much easier to develop standard units for well-defined single

tasks than for overall control schemes.

3. Failure of a unit will cause much less disruption in that only a small portion of the overall system

will not be working. Provision of automatic or semiautomatic transfer to a back-up system is much

easier.

4. It is much easier to make changes to the system, in the form of either hardware replacements or

software changes. Changing large programs is hazardous because of the possibility of unforeseen

side-effects: with the use of small modules such effects are less likely to occur and are more easily

detected and corrected.

5. Linking by serial highway means that the computer units can be widely dispersed: hence it is

unnecessary to bring cables carrying transducer signals to a central control room.

2.7 HUMAN –COMPUTER INTERFACE:

The key to the successful adoption of a computer control scheme is often the facilities

provided for the plant operator or user of the system. A simple and clear system for the day-to-day

operation of the plant must be provided. All the information relevant to the current state of its

operation should be readily available and facilities to enable interaction with the plant - to change set

points, to adjust actuators by hand, to acknowledge alarm conditions, etc. - should be provided. A

large proportion of the design and programming effort goes into the design and construction of

operator facilities and the major process control equipment companies have developed extensive

schemes for the presentation of information.

BGSIT,Dept. Of ECE

Page 40

Real Time Systems 15EC743

A typical operator station has specially designed keyboards and several display and printer

units; extensive use is made of color displays and mimic diagrams; video units are frequently

provided to enable the operator to see parts of the plant (Jovic, 1986). The standard software

packages typically provide a range of display types: an alarm overview presenting information on the

alarm status of large areas of the plant; a number of area displays presenting information on the

control systems associated with each area; and loop displays giving extensive information on the

details of a particular control loop. The exact nature of the displays is usually determined by the

engineer responsible for the plant or part of the plant.

The plant manager requires access to different information: hard copy printouts - including

graphs - that summarize the day-to-day operation of the plant and also provide a permanent plant

operating history. Data presented to the manager will frequently have been analyzed statistically to

provide more concise information and

to make decision-making more straightforward. The manager will be interested in assessing the

economic performance of the plant and in determining possible improvements in plant operation. The

design of user interfaces is a specialist area. The safe operation of complex systems such as aircraft,

nuclear power stations, chemical plants, air traffic control systems and other traffic control systems

can be crucially affected by the way in which information is presented to the operator.

2.8 BENEFITS OF COMPUTER CONTROL SYSTEMS:

Before the widespread availability of microprocessors, computer control was expensive and a

very strong case was needed to justify the use of computer control rather than conventional

instrumentation. In some cases computers were used because otherwise plant could not have been

made to work profitably: this is particularly the case with large industrial processes that require

complex sequencing operations. The use of a computer permits the repeatability that is essential, for

example, in plants used for the manufacture of drugs. In many applications flexibility is important - it

is difficult with conventional systems to modify the sequencing procedure to provide for the

manufacture of a different product.

Flexibility is particularly important when the product or the product specification may have to

be changed frequently: with a computer system it is simple to maintain a database containing the

product recipes and thus to change to a new recipe quickly and reliably.

BGSIT,Dept. Of ECE

Page 41

Real Time Systems 15EC743

The application of computer control systems to many large plants has frequently been justified on the

grounds that even a small increase in productivity (say I or 2070) will more than pay for the computer

system. After installation it has frequently been difficult to establish that an improvement has been

achieved; sometimes production has decreased, but the computer proponents have then argued that

but for the introduction of the computer system production would have decreased by a greater

amount! Some of the major benefits to accrue from the introduction of computer systems have been

in the increased understanding of the behavior of the process that has resulted from the studies

necessary to design the computer system and from the information gathered during running. This has

enabled supervisory systems to keep the plant running at an operating point closer to the desired point

to be designed.

The other main area of benefit has been in the control of the starting and stopping of batch

operations in that computer-based systems have generally significantly reduced the dead time

associated with batch operations. The economics of computer control have been changed drastically

by the microprocessor in that the reduction in cost and the improvement in reliability have meant that

computer-based systems are the first choice in many applications. Indeed, microprocessor-based

instrumentation is frequently cheaper than the equivalent analog unit. The major costs of computer

control are now no longer the computer hardware, but the system design and the cost of software: as a

consequence attention is shifting towards greater standardization of design and of software products

and the development of improved techniques for design (particularly software design) and for

software construction and testing. The availability of powerful, cheap and highly reliable computer

hardware and communications systems makes it possible to conceive and construct large, complex,

computer-based control systems. The complexity of such systems raises concern about their

dependability and safety.

Recommended Question:

1. List the advantages and disadvantages of using DDC.

2. In the section on human-computer interfacing we made the statement 'the design

of user interfaces is a specialist area'. Can you think of reasons to support this statement and

suggest what sort of background and training a specialist in user interfaces might require?

3. What are the advantages/disadvantages of using a continuous oven? How will the

control of the process change from using a standard oven on a batch basis to

BGSIT,Dept. Of ECE

Page 42

Real Time Systems 15EC743

using an oven in which the batch passes through on a conveyor belt? Which

will be the easier to control?

4. List the advantages of using several small computers instead of one large

computer in control applications. Are there any disadvantages that arise

from using several computers?

5. List the characteristics of Batch process and continuous process.

BGSIT,Dept. Of ECE

Page 43

Real Time Systems 15EC743

MODULE- 2

Computer Hardware Requirements for RTS

Introduction, General Purpose Computer, Single Chip Microcontroller, Specialized Processors,

Process –Related Interfaces, Data Transfer Techniques, Communications, Standard Interface.

Recommended book for reading:

1. Real –Time Computer control –An Introduction, Stuart Bennet, 2
nd

 Edn. Pearson

Education 2005.

2. Real-Time Systems Design and Analysis, Phillip. A. Laplante, Second Edition, PHI, 2005.

3.1 COMPUTER HARDWARE REQUIREMENTS FOR RTS.

INTRODUCTION:

Although almost any digital computer can be used for real-time computer control and other

real-time operations, they are not all equally easily adapted for such work. In the majority of

embedded computer-based systems the computer used will be a microprocessor, a microcomputer or

a specialized digital processor. Specialized digital processors include fast digital signal processors,

parallel computers such as the transputer, and special RISC (Reduced Instruction Set Computers) for

use in safety-critical applications (for example, the VIPER (Cullyer and Pygott, 1987).

3.2 GENERAL PURPOSE COMPUTER:

The general purpose microprocessors include the Intel XX86 series, Motorola 680XX series,

National 32XXX series and the Zilog Z80 and Z8000 series. A characteristic of computers used in

control systems is that they are modular: they provide the means of adding extra units, in particular

specialized input and output devices, to a basic unit. The capabilities of the basic unit in terms of its

processing power, storage capacity, input/output bandwidth and interrupt structure determine the

overall performance of the system.

BGSIT,Dept. Of ECE

Page 44

Real Time Systems 15EC743

A simplified block diagram of the basic unit is shown in Figure 3.1; the arithmetic and logic, control,

register, memory and input/ output units represent a general purpose digital computer. Of equal

importance in a control computer are the input/output channels which provide a means of connecting

process instrumentation to the computer, and also the displays and input devices provided for the

operator. The instruments are not usually connected directly but by means of interface units.

Figure: 3.1 Schematic diagram of a general purpose digital computer.

CENTRAL PROCESSING UNIT:

The arithmetic and logic unit (ALU) together with the control unit and the general purpose

registers make up the central processing unit (CPU). The ALU contains the circuits necessary to carry

out arithmetic and logic operations, for example to add numbers, subtract numbers and compare two

numbers. Associated with it may be hardware units to provide multiplication and division of fixed

point numbers and, in the more powerful computers, a floating point arithmetic unit. The general

purpose registers can be used for storing data temporarily while it is being processed. Early

BGSIT,Dept. Of ECE

Page 45

Real Time Systems 15EC743

computers had a very limited number of general purpose registers and hence frequent access to main

memory was required. Most computers now have CPUs with several general purpose registers - some

large systems have as many as 256 registers - and for many computations, intermediate results can be

held in the CPU without the need to access main memory thus giving faster processing.

The control unit continually supervises the operations within the CPU: it fetches program

instructions from main memory, decodes the instructions and sets up the necessary data paths and

timing cycles for the execution of the instructions. The features of the CPU which determine the

processing power available and hence influence the choice of computer for process control include:

• Wordlength;

• Instruction set;

• Addressing methods;

• Number of registers;

• Information transfer rates; and

• Interrupt structure.

The computer word length is important both in ensuring adequate precision in calculations

and in allowing direct access to a large area of main storage within one instruction word. It is possible

to compensate for short wordlengths, both for arithmetic precision and for memory access, by using

multiple word operations, but the penalty is increased time for the operations. The basic instruction

set of the CPU is also important in determining its overall performance. Features which are desirable

are:

• Flexible addressing modes for direct and immediate addressing;

• Relative addressing modes;

• Address modification by use of index registers;

• Instructions to transfer variable length blocks of data between storage units

or locations within memory; and

• Single commands to carry out multiple operations.

STORAGE:

The storage used on computer control systems divides into two main categories: fast access

storage and auxiliary storage. The fast access memory is that part of the system which contains data,

programs and results which are currently being operated on. The major restriction with current

BGSIT,Dept. Of ECE

Page 46

Real Time Systems 15EC743

computers is commonly the addressing limit of the processor. In addition to RAM (random access

memory - read/write) it is now common to have ROM (read-only memory), PROM (programmable

read-only memory) or EPROM (electronically programmable read only memory) for the storage of

critical code or predefined functions. The use of ROM has eased the problem of memory protection to

prevent loss of programs through power failure or corruption by the malfunctioning of the software

(this can be a particular problem during testing).

An alternative to using ROM is the use of memory mapping techniques that trap instructions

which attempt to store in a protected area. This technique is usually only used on the larger systems

which use a memory management system to map program addresses onto the physical address space.

An extension of the system allows particular parts of the physical memory to be set as read only, or

even locked out altogether: write access can be gained only by the use of 'privileged' instructions. The

auxiliary storage medium is typically disk or magnetic tape. These devices provide bulk storage for

programs or data which are required infrequently at a much lower cost than fast access memory. The

penalty is a much longer access time and the need for interface boards and software to connect them

to the CPU. In a real-time system use of the CPU to carry out the transfer is not desirable as it is slow

and no other computation can take place during transfer. For efficiency of transfer it is sensible to

transfer large blocks of data rather than a single word or byte and this can result in the CPU not being

available for up to several seconds in some cases. The approach frequently used is direct memory

access (DMA). For this the interface controller for the backing memory must be able to take control

of the address and data buses of the computer.

INPUT AND OUTPUT:

The input/output (I/O) interface is one of the most complex areas of a computer system; part

of the complication arises because of the wide variety of devices which have to be connected and the

wide variation in the rates of data transfer. A printer may operate at 300 baud whereas a disk may

require a rate of 500 kbaud. The devices may require parallel or serial data transfers, analog-to-digital

or digital-to-analog conversion, or conversion to pulse rates. The I/O system of most control

computers can be divided into three sections:

• Process I/O;

• Operator I/O; and

• Computer I/O.

BGSIT,Dept. Of ECE

Page 47

Real Time Systems 15EC743

BUS STRUCTURE:

Buses are characterized into three ways:

• Mechanical (physical) structure;

• Electrical; and

• Functional.

In mechanical or physical terms a bus is a collection of conductors which carry electrical

signals, for example tracks on a printed circuit board or the wires in a ribbon cable. The physical form

of the bus represents the mechanical characteristic of the bus system. The electrical characteristics

of the bus are the signal levels, loading (that is, how many loads the line can support), and type of

output gates (open-collector, tri-state). The functional characteristics describe the type of information

which the electrical signals flowing along the bus conductors represent. The bus lines can be divided

into three functional groups:

• Address lines;

• Data lines; and

• Control and status lines.

3.3 SINGLE CHIP MICROCONTROLLER:

Many integrated circuit manufacturers produce microcomputers in which all the components

necessary for a complete computer are provided on one single chip. A typical single-chip device is

shown in Figure 3.2. With only a small amount of EPROM and an even smaller amount of RAM this

type of device is obviously intended for small, simple systems. The memory can always be extended

by using external memory chips. The microcontroller is similarly a single-chip device that is

specifically intended for embedded computer control applications. The main difference between it

and a microcomputer is that it typically will have on board the chip a multiplexed ADC and some

form of process output, for example a pulse width modulator unit. The chip may also contain a real-

time clock generator and a watch-dog timer.

BGSIT,Dept. Of ECE

Page 48

Real Time Systems 15EC743

Figure 3.2: A typical single-chip computer.

3.4 SPECIALIZED PROCESSORS:

Specialized processors have been developed for two main purposes:

• Safety-critical applications; and

• Increased computation speed.

For safety-critical applications the approach has been to simplify the instruction set - the so-called

reduced instruction set computer (RISC). The advantage of simplifying the instruction set is the

possibility of formal verification (using mathematical proofs) that the logic of the processor is correct.

The second advantage of the RISC machine is that it is easier to write assemblers and compilers for

the simple instruction set. An example of such a machine is the VIPER (Cullyer, 1988; Dettmer,

1986), the main features of which are:

• Formal mathematical description of the processor logic.

• Integer arithmetic (32 bit) and no floating point operations (it is argued that

floating point operations are inexact and cannot be formally veri fled).

• No interrupts - all event handling is done using polling (again interrupts

make formal verification impossible).

• No dynamic memory allocation.

BGSIT,Dept. Of ECE

Page 49

Real Time Systems 15EC743

The traditional Von Neumann computer architecture with its one CPU through which all the data and

instructions have to pass sequentially results in a bottleneck. Increasing the processor speed can

increase the throughput but eventually systems will reach a physical limit because of the fundamental

limitation on the speed at which an electronic signal can travel. The search for increased processing

speed has led to the abandonment of the Von Neumann architecture for high-speed computing.

3.5 PARELLEL COMPUTERS:

Many different forms of parallel computer architectures have been devised; however, they can

be summarized as belonging to one of three categories: SIMD MISD MIMD

Single instruction stream, multiple data stream.

Multiple instruction stream, single data stream.

Multiple instruction stream, multiple data stream.

These are illustrated in Figure 3.3 where the traditional architecture characterized as SISD (Single

instruction stream, single data stream) is also shown. MIMD systems are obviously the most powerful

class of parallel computers in that each processor can potentially be executing a different program on

a different data set. The most widely available MIMD system is the INMOS transputer.

BGSIT,Dept. Of ECE

Page 50

Real Time Systems 15EC743

Figure 3.3: Computer system architecture.

An individual chip can be used as a stand-alone computing device; however, the power of the

transputer is obtained when several transputers are interconnected to form a parallel processing

network. INMOS developed a special programming language, occam, for use with the transputer.

Occam is based on the assumption that the application to be implemented on the transputer can be

modelled as a set of processes (actions) that communicate with each other via channels. A channel is

a unidirectional link between two processes which provides synchronized communication. A process

can be a primitive process, or a collection of processes; hence the system supports a hierarchical

structure. Processes are dynamic in that they can be created, can die and can create other processes.

3.6 DIGITIAL SIGNAL PROCESSORS:

In applications such as speech processing, telecommunications, radar and hi-fi systems analog

techniques have been used for modifying the signal characteristics. There are advantages to be gained

if such processing can be done using digital techniques in that the digital devices are inherently more

BGSIT,Dept. Of ECE

Page 51

Real Time Systems 15EC743

reliable and not subject to drift. The problem is that the bandwidth of the signals to be processed is

such as to demand very high processing speeds. Special purpose integrated circuits optimized to meet

the signal processing requirements have been developed. They typically use the so-called Harvard

architecture in which separate paths are provided for data and for instructions. DSPs typically use

fixed point arithmetic and the instruction set contains instructions for manipulating complex numbers.

They are difficult to program as few high-level language compilers are available.

3.7 PROCESS-RELATED INTERFACES:

Instruments and actuators connected to the process or plant can take a wide variety of forms:

they may be used for measuring temperatures and hence use thermocouples, resistance thermometers,

thermistors, etc.; they could be measuring flow rates and use impulse turbines; they could be used to

open valves or to control thyristor-operated heaters. In all these operations there is a need to convert a

digital quantity, in the form of a bit pattern in a computer word, to a physical quantity, or to convert a

physical quantity to a bit pattern. Designing a different interface for each specific type of instrument

or actuator is not sensible or economic and hence we look for some commonality between them. Most

devices can be allocated to one of the following four categories:

1. Digital quantities: These can be either binary that is a valve is open or closed, a switch is on or off,

a relay should be opened or closed, or a generalized digital quantity, that is the output from a digital

voltmeter in BCD (binary coded decimal) or other format.

2. Analog quantities: Thermocouples, strain gauges, etc., give outputs which are measured in mill

volts; these can be amplified using operational amplifiers to give voltages in the range - 10 to + 10

volts; conventional industrial instruments frequently have a current output in the range 4 to 20 mA

(current transmission gives much better immunity to noise than transmission of low-voltage signals).

The characteristic of these signals is that they are continuous variables and have to be both sampled

and converted to a digital value.

3. Pulses and pulse rates: A number of measuring instruments, particularly flow meters, provide

output in the form of pulse trains; similarly the increasing use of stepping motors as actuators requires

the provision of pulse outputs. Many traditional controllers have also used pulse outputs: for example,

valves controlling flows are frequently operated by switching a dc or ac motor on and off, the length

of the on pulse being a measure or

BGSIT,Dept. Of ECE

Page 52

Real Time Systems 15EC743

the change in valve opening required .

4. Telemetry: The increasing use of remote outstations, for example electricity substations and gas

pressure reduction stations, has increased the use of telemetry. The data may be transmitted by

landline, radio or the public telephone net work: it is, however, characterized by being sent in serial

form, usually encoded in standard ASCII characters. For small quantities of data the transmission is

usually asynchronous. Telemetry channels may also be used on a plant with a hierarchy of computer

systems instead of connecting the computers by some form of network. An example of this is the

CUTLASS system used by the Central Electricity Generating Board, which uses standard RS232

lines to connect a hierarchy of control computers. The ability to classify the interface requirements

into the above categories means that a limited number of interfaces can be provided for a process

control computer.

3.8 DIGITIAL SIGNAL INTERFACES:

A simple digital input interface is shown in Figure 3.4. It is assumed that the plant outputs are

logic signals which appear on lines connected to the digital input register. It is usual to transfer one

word at a time to the computer, so normally the digital input register will have the same number of

input lines as the number of bits in the computer word. The logic levels on the input lines will

typically be 0 and + 5 V; if the contacts on the plant which provide the logic signals use different

levels then conversion of signal levels will be required. To read the lines connected to the digital

input register the computer has to place the address of the register on the address bus and decoding

circuitry is required in the interface (address decoder) to select the digital input register. In addition to

the 'select' signal an 'enable' signal may also be required; this could be provided by the 'read' signal

from the computer control bus. In response to both the 'select' and 'enable' signals the digital input

register enables its output gates and puts data onto the computer data bus.

BGSIT,Dept. Of ECE

Page 53

Real Time Systems 15EC743

Figure 3.4: A simple digital input interface.

Figure 3.4 shows a system that provides information only on demand from the computer: it cannot

indicate 10 the computer that information is waiting. There are many circumstances in which it is

useful to indicate a change of status of input lines to the computer. To do this a status line which the

computer can test, or which can be used as an interrupt, is needed. A simple digital output interface is

shown in Figure 3.6. Digital output is the simplest form of output: all that is required is a register or

latch which can hold the data output from the computer. To avoid the data in the register changing

when the data on the data bus changes, the output latch must respond only when it is addressed. The

'enable' signal is used to indicate to the device that the data is stable on the data bus and can be read.

BGSIT,Dept. Of ECE

Page 54

Real Time Systems 15EC743

Figure 3.6: A simple digital output interface.

3.9 PULSE INTERFACES:

In its simplest form a pulse input interface consists of a counter connected to a line from the

plant. The counter is reset under program control and after a fixed length of time the contents are read

by the computer. A typical arrangement is shown in Figure 3.7, which also shows a simple pulse

output interface. The transfer of data from the counter to the computer uses techniques similar to

those for the digital input described above. The measurement of the length of time for which the

count proceeds can be carried out either by a logic circuit in the counter interface or by the computer.

If the timing is done by the computer then the 'enable' signal must inhibit the further counting of

pulses. If the computing system is not heavily loaded, the external interface hardware required can be

reduced by connecting the pulse input to an interrupt and counting the pulses under program control.

BGSIT,Dept. Of ECE

Page 55

Real Time Systems 15EC743

Figure 3.7: Pulse input and output interfaces.

Pulse outputs can take a variety of forms:

1. a series of pulses of fixed duration;

2. a single pulse of variable length (time-proportioned output); and

3. pulse width modulation - a series of pulses of different widths sent at

a fixed frequency.

BGSIT,Dept. Of ECE

Page 56

Real Time Systems 15EC743

3.10 ANALOG INTERFACES:

The conversion of analog measurements to digital measurements involves two operations:

sampling and quantization. The sampling rate necessary for controlling a process is discussed in the

next chapter. As is shown in Figure 3.8 many analog-to-digital converters (ADCs) include a 'sample-

hold' circuit on the input to the device. The sample time of this unit is much shorter than the sample

time required for the process; this sample-hold unit is used to prevent a change in the quantity being

measured while it is being converted to a discrete quantity. To operate the analog input interface the

computer issues a 'start' or 'sample' signal, typically a short pulse (I microsecond), and in response the

ADC switches the 'sample-hold' into SAMPLE for a short period after which the quantization process

commences. Quantization may take from a few microseconds to several milliseconds. On completion

of the conversion the ADC raises a 'ready' or 'complete' line which is either polled by the computer or

is used to generate an

interrupt.

Digital-to-analog conversion is simpler (and hence cheaper) than analog-to-digital conversion

and as a consequence it is normal to provide one converter for each output. (It is possible to produce a

multiplexer in order to use a single digital-to-analog converter (DAC) for analog output. Why would

this solution not be particularly useful?) Figure 3.9 shows a typical arrangement. Each DAC is

connected to the data bus and the appropriate channel is selected by putting the channel address on

the computer address bus. The DAC acts as a latch and holds the previous value sent to it until the

next value is sent. The conversion time is typically from 5 to 20 ms and typical analog outputs are - 5

to + 5 V, - 10 to + 10 V. or a current output of 0 to 20 mA.

BGSIT,Dept. Of ECE

Page 57

Real Time Systems 15EC743

Figure 3.8: Analog input system.

Figure 3.9: Analog output system.

BGSIT,Dept. Of ECE

Page 58

Real Time Systems 15EC743

3.11 REAL TIME CLOCK:

A real-time clock is a vital auxiliary device for control computer systems. The hardware unit

given the name 'real-time clock' mayor may not be a clock; in many systems it is nothing more than a

pulse generator with a precisely controlled frequency. A common form of clock is based on using the

ac supply line to generate pulses at 50 (or 60) times per second. By using slightly more complicated

circuitry higher pulse rates can be generated, for example 100 (or 120) pulses per second. The pulses

are used to generate interrupts and the interrupt handling software counts the interrupts and hence

keeps time. If a greater precision in the time measurement than can be provided from the power

supply is required then a hardware timer is used. A fixed frequency pulse generator (usually crystal-

driven) decrements a counter which, when it reaches zero, generates an interrupt and reloads the

count value. The interrupt activates the real-time clock software. The interval at which the timer

generates an interrupt, and hence the precision of the clock, is controlled by the count value loaded

into the hardware timer.

Real-time clocks are also used in batch processing and on-line computer systems. In the

former, they are used to provide date and time on printouts and also for accounting purposes so that a

user can be charged for the computer time used; the charge may vary depending on the time of day or

day of the week. In on-line systems similar facilities to those of the batch computer system are

required, but in addition the user expects the terminal to appear as if it is the only terminal connected

to the system. The user may expect delays when the program is performing a large amount of

calculation but not when it is communicating with the terminal. To avoid any one program causing

delays to other programs, no program is allowed to run for more than a fraction of a second; typically

timings are 200 ms or less. If further processing for a particular program is required it is only

performed after all other programs have been given the opportunity to run. This technique is known

as time slicing.

3.12 DATA TRANSFER TECHNIQUES:

Although the meaning of the data transmitted by the various processes, the operator and computer

peripherals differ, there are many common features which relate to the transfer of the data from the

interface to the computer. A characteristic of most interface devices is that they operate

BGSIT,Dept. Of ECE

Page 59

Real Time Systems 15EC743

synchronously with respect to the computer and that they operate at much lower speeds. Direct

control of the interface devices by the computer is known as 'programmed transfer' and involves use

of the CPU. Programmed transfer gives maximum flexibility of operation but because of the

difference in operating speeds of the CPU and many interface devices it is inefficient. An alternative

approach is to use direct memory access (DMA); the transfer requirements are set up using program

control but the data transfers take place directly between the device and memory without disturbing

the operation of the CPU (except that bus cycles are used). With the reduction in cost of integrated

circuits and microprocessors, detailed control of the input/output operations is being transferred to

I/O processors which provide buffered entry.

For a long time in on-line computing, buffers have been used to collect information (for

example, a line) before invoking the program requesting the input. This approach is now being

extended through the provision of I/O processors for real-time systems. For example, an I/O

processor can be used to control the scanning of a number of analog input channels, only requesting

main computer time when it has collected data from all the channels. This can be extended so that the

I/O processor checks the data to test if any values are outside preset limits set by the main system. A

major problem in data transfer is timing. It may be thought that under programmed transfer, the

computer can read or write at any time to a device, that is, can make an unconditional transfer. For

some process output devices, for example switches and indicator lights connected to a digital output

interface, or for DACs, unconditional transfer is possible since they are always ready to receive data.

For other output devices, for example printers and communications channels, which are not fast

enough to keep up with the computer but must accept a sequence of data items without missing any

item, unconditional transfer cannot be used. The computer must be sure that the device is ready to

accept the next item of data; hence either a timing loop to synchronies the computer to the external

device or conditional transfer has to be used. Conditional transfer can be used for digital inputs but

not usually for pulse inputs or analog inputs.

BGSIT,Dept. Of ECE

Page 60

Real Time Systems 15EC743

Figure 3.10: Conditional transfer (busy wait).

3.13 COMMUNCIATIONS:

The use of distributed computer systems implies the need for communication: between

instruments on the plant and the low-level computers (see Figure 3.20); between the Level land Level

2 computers; and between the Level 2 and the higher level computers. At the plant level

communications systems typically involve parallel analog and digital signal transmission techniques

since the distances over which communication is required are small and high-speed communication is

usually required. At the higher levels it is more usual to use serial communication methods since, as

communication distances extend beyond a few hundred yards, the use of parallel cabling rapidly

becomes cumbersome and costly. As the distance between the source and receiver increases it

becomes more difficult, when using analog techniques, to obtain a high signal-to-noise ratio; this is

particularly so in an industrial environment where there may be numerous

BGSIT,Dept. Of ECE

Page 61

Real Time Systems 15EC743

sources of interference. Analog systems are therefore generally limited to short distances. The use of

parallel digital transmission provides high data transfer rates but is expensive in terms of cabling and

interface circuitry and again is normally only used over short distances (or when very high rates of

transfer are required).

Figure 3.20: Data transmission links.

Serial communications can be characterized in several ways:
1. Mode

(a) Asynchronous
(b) Synchronous

2. Quantity
(a) Character by character

(b) Block
3. Distance

(a) Local
(b) Remote that is wide area

4. Code
(a) ASCII

(b) Other

BGSIT,Dept. Of ECE

Page 62

Real Time Systems 15EC743

3.14 STANDARD INTERFACES:

Most of the companies which supply computers for real-time control have developed their

own 'standard' interfaces, such as the Digital Equipment Corporation's Q-bus for the PDP-ll series,

and, typically, they, and independent suppliers, will be able to offer a large range of interface cards

for such systems. The difficulty with the standards supported by particular manufacturers is that they

are not compatible with each other; hence a change of computer necessitates a redesign of the

interface. An early attempt to produce an independent standard was made by the British Standards

Institution (BS 4421, 1969). Unfortunately the standard is limited to the concept of how the devices

should interconnect and the standard does not define the hardware. It is not widely used and has been

overtaken by more recent developments.

An interface which was originally designed for use in atomic energy research laboratories -

the computer automated measurement and control (CAMAC) system - has been widely adopted in

laboratories, the nuclear industry and some other industries. There are also FORTRAN libraries

which provide software to support a wide range of the interface modules. One of the attractions of the

system is that the CAMAC data highway) connects to the computer by a special card; to change to a

different computer only requires that the one card be changed. A general purpose interface bus

(GPIB) was developed by the Hewlett Packard Company in the early 1970s for connecting laboratory

instruments to a computer. The system was adopted by the IEEE and standardized as the IEEE 488

bus system.

BGSIT, Dept of ECE

Page 63

Real Time Systems 15EC743

Figure 3.25: ISO seven - layer model.

Table: ISO seven layer model.

BGSIT,Dept. Of ECE

Page 64

Real Time Systems 15EC743

The bus can connect up to a maximum of 15 devices and is only suited to laboratory or small,

simple control applications. The ISO (International Organization for Standardization) have

promulgated a standard protocol system in the Open Systems Interconnection (OSI) model. This is a

layered (hierarchical) model with seven layers running from the basic physical connection to the

highest application protocol.

Recommended questions:

1. There are a number of different types of analog-to-digital converters. List them and discuss

typical applications for each type (see, for example, Woolvet (1977) or Barney (1985)).

2. The clock on a computer system generates an interrupt every 20 ms. Draw a flowchart for the

interrupt service routine. The routine has to keep a 24 hour clock in hours, minutes and

seconds.

3. Twenty analog signals from a plant have to be processed (sampled and digitized) every 1s. the

analog-to-digital converter and multiplexer which is available can operate in two modes:

automatic scan and computer-controlled scan. In the automatic scan mode, on receipt of a

'start' signal the converter cycles through each channel in turn.

4. A turbine flow meter generates pulses proportional to the flow rate of a liquid. What methods

can be used to interface the device to a computer?

5. Why is memory protection important in real-time systems?

6. What methods can be used to provide memory protection?

BGSIT,Dept. Of ECE

Page 65

Real Time Systems 15EC743

MODULE- 3

Languages For Real –Time Applications

Introduction, Syntax Layout and Readability, Declaration and Initialization of Variables and

Constants, Modularity and Variables, Compilation , Data Type, Control Structure, Exception

Handling, Low –Level Facilities, Co routines, Interrupts and Device Handling, Concurrency, Real –

Time Support, Overview of Real –Time Languages.

Recommended book for reading:

1. Real –Time Computer control –An Introduction, Stuart Bennet, 2
nd

 Edn. Pearson

Education 2005.

2. Real-Time Systems Design and Analysis, Phillip. A. Laplante, Second Edition, PHI, 2005.

3. Real time Systems Development, Rob Williams, Elsevier, 2006.

LANGUAGES FOR REAL-TIME APPLICATIONS

4.1 INTRODUCTION

Languages are an important implementation tool for all systems that include embedded

computers. To understand fully methods for designing software for such systems one needs to have a

sound understanding of the range of implementation languages available and of the facilities which

they offer. The range of languages with features for real-time use continues to grow, as do the range

and type of features offered. In this chapter we concentrate on the fundamental requirements of a

good language for real-time applications and will illustrate these with examples drawn largely from

Modula-2 and Ada. Producing safe real-time software places heavy demands on programming

languages. Real-time software must be reliable: the failure of a real-time system can be expensive

both in terms of lost production, or in some cases, in the loss of human life (for example, through the

failure of an aircraft control system).

Real-time systems are frequently large and complex, factors which make development and

maintenance costly. Such systems have to respond to external events with a guaranteed response time;

they also involve a wide range of interface devices, including non-standard devices. In many

BGSIT,Dept. Of ECE

Page 66

Real Time Systems 15EC743

applications efficiency in the use of the computer hardware is vital in order to obtain the necessary

speed of operation. Early real-time systems were necessarily programmed using assembly level

languages, largely because of the need for efficient use of the CPU, and access interface devices and

support interrupts. Assembly coding is still widely used for small systems with very high computing

speed requirements, or for small systems which will be used in large numbers. In the latter case the

high cost of development is offset by the reduction in unit cost through having a small, efficient,

program. Dissatisfaction with assemblers (and with high-level languages such as FORTRAN which

began to be used as it was recognized that for many applications the advantages of high-level

languages outweighed their disadvantages) led to the development of new languages for

programming embedded computers.

The limitation of all of them is that they are designed essentially for producing sequential

programs and hence rely on operating system support for concurrency. The features that a

programmer demands of a real-time language subsume those demanded of a general purpose

language and so many of the features described below are also present (or desirable) in languages

which do not support real-time operations. Barnes (1976) and Young (1982) divided the requirements

that a user looked for in a programming language into six general areas. These are listed below in

order of importance for real-time applications:

• Security.

• Readability.

• Flexibility.

• Simplicity.

• Portability.

• Efficiency.

In the following sections we will examine how the basic features of languages

meet the requirements of the user as given above. The basic language features

examined are:

• Variables and constants: declarations, initialization.

• Data types - including structured types and pointers.

• Control structures and program layout and syntax.

• Scope and visibility rules.

• Modularity and compilation methods.

BGSIT,Dept. Of ECE

Page 67

Real Time Systems 15EC743

• Exception handling.

A language for real-time use must support the construction of programs that exhibit concurrency and

this requires support for:

• Construction of modules (software components).

• Creation and management of tasks.

• Handling of interrupts and devices.

• Intertask communication.

• Mutual exclusion.

• Exception handling.

4.1.1 SECURITY:

Security of a language is measured in terms of how effective the compiler and the run-time support

system is in detecting programming errors automatically. Obviously there are some errors which

cannot be detected by the compiler regardless of any features provided by the language: for example,

errors in the logical design of the program. The chance of such errors occurring is reduced if the

language encourages the programmer to write clear, well-structured, code. Language features that

assist in the detection of errors by the compiler include:

• good modularity support;

• enforced declaration of variables;

• good range of data types, including sub-range types;

• typing of variables; and

• unambiguous syntax.

It is not possible to test software exhaustively and yet a fundamental requirement of real-time systems

is that they operate reliably. The intrinsic security of a language is therefore of major importance for

the production of reliable programs. In real-time system development the compilation is often

performed on a different computer than the one used in the actual system, whereas run-time testing

has to be done on the actual hardware and, in the later stages, on the hardware connected to plant.

Run-time testing is therefore expensive and can interfere with the hardware development program.

Economically it is important to detect errors at the compilation stage rather than at run-time since the

BGSIT,Dept. Of ECE

Page 68

Real Time Systems 15EC743

earlier the error is detected the less it costs to correct it. Also checks done at compilation time have no

run-time overheads.

4.1.2 READABILITY:

Readability is a measure of the ease with which the operation of a program can be understood without

resort to supplementary documentation such as flowcharts or natural language descriptions. The

emphasis is on ease of reading because a particular segment of code will be written only once but will

be read many times. The benefits of good readability are:

• Reduction in documentation costs: the code itself provides the bulk of the

documentation. This is particularly valuable in projects with a long life

expectancy in which inevitably there will be a series of modifications.

Obtaining up-to-date documentation and keeping documentation up to date can

be very difficult and costly.

• Easy error detection: clear readable code makes errors, for example logical

errors, easier to detect and hence increases reliability.

• Easy maintenance: it is frequently the case that when modifications to a program

are required the person responsible for making the modifications was not

involved in the original design - changes can only be made quickly and safely if

the operation of the program is clear.

4.1.3 FLEXIBILITY:

A language must provide all the features necessary for the expression of all the operations

required by the application without requiring the use of complicated constructions and tricks, or

resort to assembly level code inserts. The flexibility of a language is a measure of this facility. It is

particularly important in real-time systems since frequently non-standard I/O devices will have to be

controlled. The achievement of high flexibility can conflict with achieving high security. The

compromise that is reached in modern languages is to provide high flexibility and, through the

module or package concept, a means by which the low-level (that is, insecure) operations can be

hidden in a limited number of self-contained sections of the program.

4.1.4 SIMPLICITY:

BGSIT, Dept of ECE

Page 69

Real Time Systems 15EC743

In language design, as in other areas of design, the simple is to be preferred to the complex.

Simplicity contributes to security. It reduces the cost of training, it reduces the probability of

programming errors arising from misinterpretation of the language features, it reduces compiler size

and it leads to more efficient object code. Associated with simplicity is consistency: a good language

should not impose arbitrary restrictions (or relaxations) on the use of any feature of the language.

4.1.5 PORTABLITILY:

Portability, while desirable as a means of speeding up development, reducing costs and

increasing security, is difficult to achieve in practice. Surface portability has improved with the

standardization agreements on many languages. It is often possible to transfer a program in source

code form from one computer to another and find that it will compile and run on the computer to

which it has been transferred. There are, however, still problems when the word lengths of the two

machines differ and there may also be problems with the precision with which numbers are

represented even on computers with the same word length.

Portability is more difficult for real-time systems as they often make use of specific features of

the computer hardware and the operating system. A practical solution is to accept that a real-time

system will not be directly portable, and to Restrict the areas of non-portability to specific modules by

restricting the use of low level features to a restricted range of modules. Portability can be further

enhanced by writing the application software to run on a virtual machine, rather than for a specific

operating system.

4.1.6 EFFICIENCY:

In real-time systems, which must provide a guaranteed performance and meet specific time

constraints, efficiency is obviously important. In the early computer control systems great emphasis

was placed on the efficiency of the coding - both in terms of the size of the object code and in the

speed of operation - as computers were both expensive and, by today's standards, very slow. As a

consequence programming was carried out using assembly languages and frequently 'tricks' were

used to keep the code small and fast. The requirement for generating efficient object code was carried

over into the designs of the early real-time languages and in these languages the emphasis was on

efficiency rather than security and readability. The falling costs of hardware and the increase in the

computational speed of computers have changed the emphasis. Also in a large number of real-time

BGSIT,Dept. Of ECE

Page 70

Real Time Systems 15EC743

applications the concept of an efficient language has changed to include considerations of the security

and the costs of writing and maintaining the program; speed and compactness of the object code have

become, for the majority of applications, of secondary importance.

4.1.7 SYNTAX LAYOUT AND READAILITY:

The language syntax and its layout rules have a major impact on the readability of code written in the

language. Consider the program fragment given below: BEGIN

NST: = TICKS (),. ST;

T: =TICKS ()+ST;

LOOP

WHILE TICKS ()< NST DO (* nothing *) END;

T: =TICKS ();

C C;

NST: = T+ST;

IF KEYPRESSED () THEN EXIT;

END;

END;

END;

Without some explanation and comment the meaning is completely obscure. By

using long identifiers instead of, for example N S T and ST, it is possible to make

the code more readable.

BEGIN

NEXTSAMPLETIME: = TICKSO+SAMPLETIME;

TIME: =TICKS () +SAMPLETIME;

LOOP

WHILE TICKSO< NEXTSAMPLETIME DO (* NOTHING

*) END;

BGSIT,Dept. Of ECE

Page 71

Real Time Systems 15EC743

TIME: =TICKSO;

CONTROLCALCULATION;

NEXTSAMPLETIME: =TIME+SAMPLETIME;

IF KEYPRESSEDOTHEN EXIT;

END;

END;

END;

The meaning is now a little clearer, although the code is not easy to read because it is entirely

in upper case letters. We find it much easier to read lower case text than upper case and hence

readability is improved if the language permits the use of lower case text. It also helps if we can use a

different case (or some form of distinguishing mark) to identify the reserved words of the language.

Reserved words are those used to identify

particular language constructs, for example repetition statements, variable declarations, etc. In the

next version we use upper case for the reserved words and a mixture of upper and lower case for user-

defined entities.

BEGIN

NextSampleTime: = Ticks () +Sample Time;

Time: =Ticks () +Sample Time;

LOOP

WHILE Ticks () < NextSampleTime DO (* nothing *)

END;

Time: =Ticks ();

Control Calculation;

NextSampleTime: = Time + Sample Time;

IF Key Pressed () THEN EXIT;

END;

END;

END;

The program is now much easier to read in that we can easily and quickly pick out the reserved

words. It can be made even easier to read if the language allows embedded spaces and tab characters

to be used to improve the layout.

BGSIT,Dept. Of ECE

Page 72

Real Time Systems 15EC743

4.2 DECLARATION AND INTIALIZATION OF VARIABLES AND CONSTANTS.

DECLARATION:

The purpose of declaring an entity used in a program is to provide the compiler with

information on the storage requirements and to inform the system explicitly of the names being used.

Languages such as Pascal, Modula-2 and Ada require all objects to be specifically declared and a

type to be associated with the entity when it is declared. The provision of type information allows the

compiler to check that the entity is used only in operations associated with that type. If, for example,

an entity is declared as being of type REA L and then it is used as an operand in logical operation, the

compiler should detect the type incompatibility and flag the statement as being incorrect. Some older

languages, for example BASIC and FORTRAN, do not require explicit declarations; the first use of a

name is deemed to be its declaration. In FORTRAN explicit declaration is optional and entities can

be associated with a type jf declared. If entities are not declared then implicit typing takes place:

names beginning with the letters I-N are assumed to be integer numbers; names beginning with any

other letter are assumed to be real numbers.

Optional declarations are dangerous because they can lead to the construction of syntactically correct

but functionally erroneous programs. Consider the following program fragment:

100 ERROR=0

…….

200 IF X=Y THEN GOTO 300

250 EROR=1

300...

In FORTRAN (or BASIC), ERROR and EROR will be considered as two different variables

whereas the programmer's intention was that they should be the same – the variable ER 0 R in line

250 has been mistyped. FORTRAN compilers cannot detect this type of error and it is a

characteristic error of FORTRAN. Many organizations which use FORTRAN extensively avoid such

errors by insisting that all entities are declared and the code is processed by a preprocessor which

checks that all names used are mentioned in declaration statements. INTIALIZATION:

It is useful if a variable can be given an initial value when it is declared. It is bad

BGSIT,Dept. Of ECE

Page 73

Real Time Systems 15EC743

practice to rely on the compiler to initialize variables to zero or some other value.

This is not, of course, strictly necessary as a value can always be assigned to a variable. In terms of

the security of a language it is important that the compiler checks that a variable is not used before it

has had a value assigned to it. The security of languages such as Modula-2 is enhanced by the

compiler checking that all variables have been given an initial value. However, a weakness of

Modula-2 is that variables cannot be given an initial value when they are declared but have to be

initialized explicitly using an assignment statement. CONSTANTS

Some of the entities referenced in a program will have constant values either because they are

physical or mathematical entities such as the speed of light or because they are a parameter which is

fixed for that particular implementation of the program ,for example the number of control loops

being used or the bus address for an input or output device. It is always possible to provide constants

by initializing a variable to the appropriate quantity, but this has the disadvantage that it is in secure

in that the compiler cannot detect if a further assignment is made which changes the value of the

constant. It is also confusing to the reader since there is no indication which entities are constants and

which are variables (unless the initial assignment is carefully documented). Pascal provides a

mechanism for declaring constants, but since the constant declarations must precede the type

declarations, only constants of the predefined types can be declared. This is a severe restriction on the

constant mechanism. For example, it is not possible to do the following: TYPE

A Motor State = (OFF, LOW, MEDIUM, HIGH);

CONST

Motor Stop = A Motor State (OFF);

A further restriction in the constant declaration mechanism in Pascal is that the value of the constant

must be known at compilation time and expressions are not permitted in constant declarations. The

restriction on the use of expressions in constant declarations is removed in Modula-2 (experienced

assembler programmers will know the usefulness of being able to use expressions in constant

declarations).

For example, in Modula-2 the following are valid constant declarations:

CONST

message = 'a string of characters';

BGSIT,Dept. Of ECE

Page 74

Real Time Systems 15EC743

length = 1.6;

breadth = 0.5;

area = length * breadth;

4.3 MODULARITY AND VARIABLES:

Scope and visibility:

The scope of a variable is defined as the region of a program in which the variation is

potentially accessible or modifiable. The regions in which it may actually accessed or modified are

the regions in which it is said to be visible. Most languages provide mechanisms for controlling scope

and visibility. There are two general approaches: languages such as FORTRAN provide a single level

locality whereas the block-structured languages such as Modula-2 provide multilevel locality. In the

block-structured languages entities which are declared within a block, only be referenced inside that

block. Blocks can be nested and the scope extended throughout any nested blocks. This is illustrated

in Example which shows scope for a nested PROCEDURE in Modula-2. MODULE

ScopeExampLe1;

VAR

A, B: INTEGER;

PROCEDURE Level One;

VAR

B, C: INTEGER;

BEGIN

(*

*)

END (* Level one *);

BEGIN

(*

A and B visible here but not Level One and

Level One .C

*)

END ScopeExample1.

The scope of variables A and B declared in the main module ScopeExample1

BGSIT,Dept. Of ECE

Page 75

Real Time Systems 15EC743

extends throughout the program that is they are global variables.

Global and local variables:

Although the compiler can easily handle the reuse of names, it is not as easy for the

programmer and the use of deeply nested PRO CEO UR E blocks with the reuse of names can

compromise the security of a Pascal or Modula-2 program. As the program shown in Example

illustrates the reuse of names can cause confusion as to which entity is being referenced. MODULE

ScopeL2;

VAR X. Y, Z: INTEGER;

PROCEDURE L 1;

VAR Y: INTEGER;

PROCEDURE L2;

VAR X: INTEGER;

PROCEDURE L3;

VAR Z: INTEGER;

PROCEDURE L4;

BEGIN

Y: = 25; (* L1.Y NOT

LO.Y*) END L4;

BEGIN

(* L1.Y. L2.X, L3.Z visible

*) END L3;

BEGIN

(* L1.Y, L2.X. LO.Z visible

*) END L2;

BEGIN

(* LO.X, L1.Y. LO.Z visible *)

END L 1 ;

BEGIN

(* ••• *)Scope L2.

BGSIT,Dept. Of ECE

Page 76

Real Time Systems 15EC743

It is very easy to assume in assigning the value 25 to Y in PROCEDURE L4 that the global variable

Y is being referenced, when in fact it is the variable Y declared in PROCEDURE L 1 that is being

referenced.

4.4 COMPILATION OF MODULAR PROGRAM:

If we have to use a modular approach in designing software how do we compile the modules

to obtain executable object code? There are two basic approaches: either combine at the source code

level to form a single unit which is then compiled, or compile the individual modules separately and

then in some way link the compiled version of each module to form the executable program code.

Using the second approach a special piece of software called a linker has to be provided as part of the

compilation support to do the linking of the modules. A reason for the popularity and widespread use

of FORTRAN for engineering and scientific work is that subroutines can be compiled independently

from the main program, and from each other. The ability to carry out compilation independently

arises from the single-level scope rules of FORTRAN; the compiler makes the assumption that any

entity which is referenced in a subroutine, but not declared within that subroutine, will be declared

externally and hence it simply inserts the necessary external linkage to enable the linker to attach the

appropriate code. It must be stressed that the compilation is independent that is when a main program

is compiled the compiler has no information available which will enable it to check that the reference

to the subroutine is correct.

For example, a subroutine may expect three real variables as parameters, but if the user

supplies four integer variables in the call statement the error will not be detected by the compiler.

Independent compilation of most block-structured languages is even more difficult and prone to

errors in that arbitrary restrictions on the use of variables have to be imposed. Many errors can be

detected at the linking stage. However, because linking comes later in the implementation process

errors discovered at this stage are more costly to correct. It is preferable to design the language and

compilation system in such a way as to be able to detect as many errors as possible during

compilation instead of when linking. Both Modula-2 and Ada have introduced the idea of separate

compilation units. Separate compilation implies that the compiler is provided with some information

about the previously or separately compiled units which are to be incorporated into a program. In the

case of Modula-2 the source code of the DEFINITION part of a separately compiled module must be

BGSIT,Dept. Of ECE

Page 77

Real Time Systems 15EC743

made available to the user, and hence the compiler. This enables the compiler to carry out the normal

type checking and procedure parameter matching checks. Thus in Modula-2 type mismatches and

procedure parameter errors are detectable by the compiler. It also makes available the scope control

features of Modula-2. The provision of independent compilation of the type introduced in FORTRAN

represented a major advance in supporting software development because it enabled the development

of extensive object code libraries. Languages which support separate compilation represent a further

advance in that they add greater security and easy error checking to library use.

4.5 DATA TYPES:

As we have seen above, the allocation of types is closely associated with the declaration of

entities. The allocation of a type defines the set of values that can be taken by an entity of that type

and the set of operations that can be performed on the entity. The richness of types supported by a

language and the degree of rigour with which type compatibility is enforced by the language are

important influences on the security of programs written in the language. Languages which rigorously

enforce type compatibility are said to be strongly typed; languages which do not enforce type

compatibility are said to be weakly typed. FORTRAN and BASIC are weakly typed languages: they

enforce some type checking; for example, the statements A $ = 2 5 or A = X$ + Yare not allowed in

BASIC, but they allow mixed integer and real arithmetic and provide implicit type changing in

arithmetic statements. Both languages support only a limited number of types.

An example of a language which is strongly typed is Modula-2. In addition to enforcing type

checking on standard types, Modula-2 also supports enumerated types. The enumerated type allows

programmers to define their own types in addition to using the predefined types. Consider a simple

motor speed control system which has four settings 0 F F, LOW, ME DIU M, H I GH and which is

controlled from a computer system. Using Modula-2 the programmer could make the declarations:

TYPE

AMotorState = (OFF, LOW, MEDIUM, HIGH);

VAR

motor Speed: AMotorState;

The variable motor Speed can be assigned only one of the values enumerated in

the T YP E definition statement. An attempt to assign any other value will be trapped

BGSIT,Dept. Of ECE

Page 78

Real Time Systems 15EC743

by the compiler, for example the statement will be flagged as an error.

If we contrast this with the way in which the system could be programmed

using FORTRAN we can see some of the protection which strong typing

provides. In ANSI FORTRAN integers must be used to represent the four states

of the motor Control:

INTEGER OFF, LOW, MEDIUM, HIGH

DATA OFF/0/, LOW/1/, MEDIUM/2/, HIGH/3/

If the programmer is disciplined and only uses the defined integers to set MSPEED then the program

is clear and readable, but there is no mechanism to prevent direct assignment of any value to MS PEE

D.

Hence the statements

MSPEED = 24

MSPEED = 1 SO

would be considered as valid and would not be flagged as errors either by the compiler or by the run-

time system. The only way in which they could be detected is if the programmer inserted some code

to check the range of values before sending them to the controller. In FORTRAN a programmer-

inserted check would be necessary since the output of a value outside the range 0 to 3 may have an

unpredictable effect on the motor speed.

4.6 EXCEPTION HANDLING:

One of the most difficult areas of program design and implementation is the handling of

errors, unexpected events (in the sense of not being anticipated and hence catered for at the design

stage) and exceptions which make the processing of data by the subsequent segments superfluous, or

possibly dangerous. The designer has to make decisions on such questions as what errors are to be

detected. What sort of mechanism is to be used to do the detection? And what should be done when

an error is detected? Most languages provide some sort of automatic error detection mechanisms as

part of their run-time support system. Typically they trap errors such as an attempt to divide by zero,

arithmetic overflow, array bound violations, and sub-range violations; they may also include traps for

input/output errors. For many of the checks the compiler has to add code to the program; hence the

checks increase the size of the code and' reduce the speed at which it executes. In most languages the

BGSIT,Dept. Of ECE

Page 79

Real Time Systems 15EC743

normal response when an error is detected is to halt the program and display an error message on the

user's terminal. In a development environment it may be acceptable for a program to halt following

an error; in a real-time system halting the program is not acceptable as it may compromise the safety

of the system. Every attempt must be made to keep the system running.

4.7 LOW LEVEL FACILITIES:

In programming real-time systems we frequently need to manipulate directly data in specific

registers in the computer system, for example in memory registers, CPU registers and registers in an

input! output device. In the older, high-level languages, assembly-coded routines are used to do this.

Some languages provide extensions to avoid the use of assembly routines and these typically are of

the type found in many versions of BASIC. These take the following form: PEEK (address) - returns

as INTEGER variable contents of the location address.

POKE (address, value) - puts the INTEGER value in the location address.

It should be noted that on eight-bit computers the integer values must be in the range o to 255 and on

16 bit machines they can be in the range 0 to 65 535. For computer systems in which the input/output

devices are not memory mapped, for example Z80 systems, additional functions are usually provided

such as INP (address) and OUT (address, value). A slightly different approach has been adopted in

BBC BASIC which uses an 'indirection' operator. The indirection operator indicates that the variable

which follows it is to be treated as a pointer which contains the address of the operand rather than the

operand itself (the term indirection is derived from the indirect addressing mode in assembly

languages). Thus in BBC BASIC the following code

100 DACAddress=&FE60

120? DACAddress=&34

results in the hexadecimal number 34 being loaded into location FE 60 H; the indirection operator is

'?'. In some of the so-called Process FORTRAN languages and in CORAL and

RTL/2 additional features which allow manipulation of the bits in an integer variable are provided,

for example

SETBITJ (I),

IF BIT J(I) n1 ,n2 (where I refers to the bit In

variable.

BGSIT,Dept. Of ECE

Page 80

Real Time Systems 15EC743

Also available are operations such as AND, 0 R, S LA, S RA, etc., which mimic the operations

available at assembly level. The weakness of implementing low-level facilities in this way is that all

type checking is lost and it is very easy to make mistakes. A much more secure method is to allow the

programmer to declare the address of the register or memory location and to be able to associate a

type with the declaration, for example

which declares a variable of type CHAR located at memory location 0 FE60 H.

Characters can then be written to this location by simple assignment

Modula-2 provides a low-level support mechanism through a simple set of primitives which have to

be encapsulated in a small nucleus coded in the assembly language of the computer on which the

system is to run. Access to the primitives is through a module SYS TEM which is known to the

compiler. SYST EM can be thought of as the software bus linking the nucleus to the rest of the

software modules. SYSTEM makes available three data types, WORD, ADDRESS, PROCESS, and

six procedures, ADR, SIZE, TSIZE, NEWPROCESS, TRANSFER, I 0 TRANS FE R. W0 RD is the

data type which specifies a variable which maps onto one unit of the specific computer storage. As

such the number of bits in a WORD will vary from implementation to implementation; for example,

on a PDP·II implementation a WORD is 16 bits, but on a 68000 it would be 32 bits. ADDRESS

corresponds to the definition TYPEA DDRES S = POI NTER TOW0 RD, that is objects of type

ADDRES S are pointers to memory units and can be used to compute the addresses of memory

words. Objects of type PROC ESS have associated with them storage for the volatile environment of

the particular computer on which Modula-2 is implemented; they make it possible to create easily

process (task) descriptors. Three of the procedures provided by SYSTEM are for address

manipulation:

FROM S

AD

EXPOR

ADR (v) returns the ADDRESS of variable v SIZE

(v) returns the SIZE of variable v in WORDs TSIZE

(t) returns the SIZE of any variable of type t

inWORDs.

In addition variables can be mapped onto specific memory locations. This facility can be used for

writing device driver modules in Modula-2. A combination of the low-level access facilities and the

BGSIT,Dept. Of ECE

Page 81

Real Time Systems 15EC743

module concept allows details of the hardware device to be hidden within a module with only the

procedures for accessing the module being made available to the end user.

4.8 CO ROUTINES:

In Modula-2 the basic form of concurrency is provided by co routines. The two procedures NEW

PRO C E S sand T RAN S FE R exported by S Y S T EM are defined as follows: PROCEDURE

NEWPROCESS (ParameterLessProcedure: PROC);

workspace Address: ADDRESS;

workspace Size: CARDINAL;

VAR co routine: ADDRESS (* PROCESS *));

PROCEDURE TRANSFER (VAR source, destination:

ADDRESS (*PROCESS*));

Any parameter less procedure can be declared as a PROCESS. The procedure NEW PRO C E S S

associates with the procedure storage for the process parameters The amount to be allocated depends

on the number and size of the variables local to the procedure forming the coroutine, and to the

procedures which it calls. Failure to allocate sufficient space will usually result in a stack overflow

error at run-time. The variable co routine is initialized to the address which identifies the newly

created co routine and is used as a parameter in calls to T RAN S FER. The transfer of control

between co routines is made using a standard procedure T RAN SF ER which has two arguments of

type ADD RES S (PROCESS) . The first is the calling co routine and the second is the co routine to

which control is to be transferred. The mechanism is illustrated in Example 5.13. In this example the

two parameter less procedures form the two co routines which pass control to each other so that the

message

Co routine one and Co routine two

is printed out 25 times. At the end of the loop, Co routine 2 passes control

back to Main Program.

CONCURRENCY:

Wirth (1982) defined a standard module Processes s which provides a higher-level mechanism than

co routines for concurrent programming. The module makes no assumption as to how the processes

BGSIT,Dept. Of ECE

Page 82

Real Time Systems 15EC743

(tasks) will be implemented; in particular it does not assume that the processes will be implemented

on a single processor.

4.9 OVERVIEW OF REAL-TIME:

The best way to start an argument among a group of computer scientists, software engineers

or systems engineers is to ask them which is the best language to use for writing software. Rational

arguments about the merits and demerits of any particular language are likely to be submerged and

lost in a sea of prejudice. Since 1970 high-level languages for the programming and construction of

real time systems have become widely available. Early languages include: CORAL (Woodward et a/.,

1970) and RTL/2 (Barnes, 1976) as well as modifications to FORTRAN and BASIC. More recently

the interest in concurrency and multiprocessing has resulted in many languages with the potential for

use with real-time systems. These include Ada (see Young, 1982; Burns and Wellings, 1990),

ARGUS (Liskovand Scheifler, 1983), CONIC (Kramer et a/., 1983), CSP (Hoare, 1978), CUTLASS

(CEGB, see Bennett and Linkens, 1984), FORTH (Brodie, 1986),

A language suitable for programming real-time and distributed systems must have all the

characteristics of a good, modern, non-real-time language; that is it should have a clean syntax, a

rational procedure for declarations, initialisation and typing of variables, simple and consistent

control structures, clear scope and visibility rules, and should provide support for modular

construction. The addition required for real-time use includes support for concurrency or multi-

tasking and mechanisms to permit access to the basic computer functions (usually referred low-level

constructs).

Recommended question:

1. In the computer science literature you will find lots of arguments about 'global' and 'Local'

variables. What guidance would you give to somebody who asked for advice on how to

decide on the use of global or local variables?

2. Why is it useful to have available a predefined data type BITSET in Modula-2? Give

an example to illustrate how, and under what circumstances, BITSET would be used.

3. How does strong data typing contribute to the security of a programming language?

4. Explain simple table-driven approach used for application oriented software.

5. What are .the major requirements for CUTLASS? Explain in detail, with host-target

BGSIT,Dept. Of ECE

Page 83

Real Time Systems 15EC743

Configuration.

6. How do strong data typing contribute to the security of programming language?

7. What are the requirements, which CUTLASS has to meet? With a neat diagram, show

the CUTLASS host-target configuration.

BGSIT,Dept. Of ECE

Page 84

Real Time Systems 15EC743

Module-4

Operating Systems

Introduction, Real –Time Multi –Tasking OS, Scheduling Strategies, Priority Structures, Task

Management, Scheduler and Real –Time Clock Interrupt Handles, Memory Management ,Code

Sharing, Resource control, Task Co-operation and Communication, Mutual Exclusion, Data Transfer,

Liveness, Minimum OS Kernel, Examples.

Recommended book for reading:

1. Real –Time Computer control –An Introduction, Stuart Bennet, 2
nd

 Edn. Pearson

Education 2005.

2. Real-Time Systems Design and Analysis, Phillip. A. Laplante, Second Edition, PHI, 2005.

3. Real time Systems Development, Rob Williams, Elsevier, 2006.

5.1 OPERATING SYSTEMS

INTRODUCTION

Specific computer using a particular language can be hidden from the designer. An operating

system for a given computer converts the hardware of the system into a virtual machine with

characteristics defined by the operating system. Operating systems were developed, as their name

implies, to assist the operator in running a batch processing computer; they then developed to support

both real-time systems and multi-access on-line systems. The traditional approach is to incorporate all

the requirements inside a general purpose operating system as illustrated in Figure 6.1. Access to the

hardware of the system and to the I/O devices is through the operating system. In many real-time and

multi-programming systems restriction of access is enforced by hardware and software traps.

BGSIT,Dept. Of ECE

Page 85

Real Time Systems 15EC743

Figure 6.1: General purpose operating system.

The operating system is constructed, in these cases, as a monolithic monitor. In single-job operating

systems access through the operating system is not usually enforced; however, it is good

programming practice and it facilitates portability since the operating system entry points remain

constant across different implementations. In addition to supporting and controlling the basic

activities, operating systems provide various utility programs, for example loaders, linkers,

assemblers and debuggers, as well as run-time support for high-level languages.

A general purpose operating system will provide some facilities that are not required in a

particular application, and to be forced to include them adds unnecessarily to the system overheads.

Usually during the installation of an operating system certain features can be selected or omitted. A

general purpose operating system can thus be 'tailored' to meet a specific application requirement.

Recently operating systems which provide only a minimum kernel or nucleus have become popular;

additional features can be added by the applications programmer writing in a high-level language.

This structure is shown in Figure 6.2. In this type of operating system the distinction between the

operating system and the application software becomes blurred. The approach has many advantages

for applications that involve small, embedded systems.

BGSIT,Dept. Of ECE

Page 86

Real Time Systems 15EC743

5.2 REAL-TIME MULTI-TASKING OS:

There are many different types of operating systems and until the early 1980s there was a

clear distinction between operating systems designed for use in real-time applications and other types

of operating system. In recent years the dividing line has become blurred. For example, languages

such as Modula-2 enable us to construct multi-tasking real-time applications that run on top of single-

user, single· task operating systems. And operating systems such as UNIX and OS/2 support multi-

user, multi-tasking applications. Confusion can arise between multi-user or multi-programming

operating systems and multi-tasking operating systems. The function of a multi-user operating system

is illustrated in Figure 6.4: the operating system ensures that each user can run a single program as if

they had the whole of the computer system for their program.

Although at any given instance it is not possible to predict which user will have the use of the

CPU, or even if the user's code is in the memory, the operating system ensures that one user program

cannot interfere with the operation of another user program. Each user program runs in its own

protected environment. A primary concern of the operating system is to prevent one program, either

deliberately or through error, corrupting another. In a multi-tasking operating system it is assumed

that there is a single user and that the various tasks co-operate to serve the requirements of the user.

Co-operation requires that the tasks communicate with each other and share common data. This is

illustrated in Figure 6.5. In a good multitasking operating system task communication and data

sharing will be regulated so that the operating system is able to prevent inadvertent communication or

data access (that is, arising through an error in the coding of one task) and hence protect data which is

private to a task (note that deliberate interference cannot be prevented the tasks are assumed to be co-

operating).

BGSIT,Dept. Of ECE

Page 87

Real Time Systems 15EC743

Figure: Multitasking operating system.

A real-time multi-tasking operating system has to support the resource sharing and the timing

requirements of the tasks and the functions can be divided as follows:

Task management: the allocation of memory and processor time (scheduling) to tasks.

Memory management: control of memory allocation.

Resource control: control of all shared resources other than memory and CPU time.

Intertask communication and synchronization: provision of support mechanisms to provide safe

communication between tasks and to enable tasks to synchronize their activities.

BGSIT,Dept. Of ECE

Page 88

Real Time Systems 15EC743

Figure: Typical structure of real-time operating system.

5.3 SCHEDULING STRATEGIES:

If we consider the scheduling of time allocation on a single CPU there are two

basic strategies:

1. Cyclic.

2. Pre-emptive.

1. Cyclic

The first of these, cyclic, allocates the CPU to a task in turn. The task uses the CPU for as long

as it wishes. When it no longer requires it the scheduler allocates it to the next task in the list. This is

a very simple strategy which is highly efficient in that it minimizes the time lost in switching between

tasks. It is an effective strategy for small embedded 'systems for which the execution times for each

task run are carefully calculated (often by counting the number of machine instruction cycles

BGSIT,Dept. Of ECE

Page 89

Real Time Systems 15EC743

for. the task) and for which the software is carefully divided into appropriate task segments. In

general this approach is too restrictive since it requires that the task units have similar execution

times. It is also difficult to deal with random events using this method.

2. Pre-emptive.

There are many pre-emptive strategies. All involve the possibility that a task will be

interrupted - hence the term pre-emptive - before it has completed a particular invocation. A

consequence of this is that the executive has to make provision to save the volatile environment for

each task, since at some later time it will be allocated CPU time and will want to continue from the

exact point at which it was interrupted. This process is called context switching and a mechanism for

supporting it is described below. The simplest form of pre-emptive scheduling is to use a time slicing

approach (sometimes called a round-robin method). Using this strategy each task is allocated a fixed

amount of CPU time - a specified number of ticks of the clock – and at the end of this time it is

stopped and the next task in the list is run. Thus each task in turn is allocated an equal share of the

CPU time. If a task completes before the end of its time slice the next task in the list is run

immediately.

The majority of existing RTOSs use a priority scheduling mechanism. Tasks are allocated a

priority level and at the end of a predetermined time slice the task with the highest priority of those

ready to run is chosen and is given control of the CPU. Note that this may mean that the task which is

currently running continues to run. Task priorities may be fixed - a static priority system - or may be

changed during system execution - a dynamic priority system. Dynamic priority schemes can increase

the flexibility of the system, for example they can be used to increase the priority of particular tasks

under alarm conditions. Changing priorities is, however, risky as it makes it much harder to predict

the behavior of the system and to test it. There is the risk of locking out certain tasks for long periods

of time. If the software is well designed and there is adequate computing power there should be no

need to change priorities - all the necessary constraints will be met. If it is badly designed and/or there

are inadequate computing resources then dynamic allocation of priorities will not produce a viable,

reliable system.

BGSIT,Dept. Of ECE

Page 90

Real Time Systems 15EC743

5.4 PRIORITY STRUCTURES:

In a real-time system the designer has to assign priorities to the tasks in the system. The

priority will depend on how quickly a task will have to respond to a particular event. An event may

be some activity of the process or may be the elapsing of a specified amount of time.

1. Interrupt level: at this level are the service routines for the tasks and devices which require very

fast response - measured in milliseconds. One of these tasks will be the real-time clock task and clock

level dispatcher.

2. Clock level: at this level are the tasks which require repetitive processing, such as the sampling and

control tasks, and tasks which require accurate timing. The lowest-priority task at this level is the

base level scheduler.

3. Base level: tasks at this level are of low priority and either have no deadlines to meet or are

allowed a wide margin of error in their timing. Tasks at this level may be allocated priorities or may

all run at a single priority level - that of the base level scheduler.

Interrupt level:

As we have already seen an interrupt forces a rescheduling of the work of the CPU and the system has

no control over the timing of the rescheduling. Because an interrupt-generated rescheduling is outside

the control of the system it is necessary to keep the amount of processing to be done by the interrupt

handling routine to a minimum. Usually the interrupt handling routine does sufficient processing to

preserve the necessary information and to pass this information to a further handling routine which

operates at a lower-priority level, either clock level or base level. Interrupt handling routines have to

provide a mechanism for task swapping, that is they have to save the volatile environment.

BGSIT,Dept. Of ECE

Page 91

Real Time Systems 15EC743

Figure: Priority levels in an RTOS.

Clock level:

One interrupt level task will be the real-time clock handling routine which will be entered at

some interval, usually determined by the required activation rate for the most frequently required

task. Typical values are I to 200 ms. Each clock interrupt is known as a tick and represents the

smallest time interval known to the system. The function of the clock interrupt handling routine is to

update the time-of-day clock in the system and to transfer control to the dispatcher. The scheduler

selects which task is to run at a particular clock tick. Clock level tasks divide into two categories:

BGSIT,Dept. Of ECE

Page 92

Real Time Systems 15EC743

1. CYCLIC: these are tasks which require accurate synchronization with the outside world.

2. DELA Y: these tasks simply wish to have a fixed delay between successive repetitions or to delay

their activities for a given period of time.

Cyclic tasks:

The cyclic tasks are ordered in a priority which reflects the accuracy of timing required for the

task, those which require high accuracy being given the highest priority. Tasks of lower priority

within the clock level will have some jitter since they will have to await completion of the higher -

level tasks.

Delay tasks:

The tasks which wish to delay their activities for a fixed period of time, either to allow some

external event to complete (for example, a relay may take 20 ms to close) or because they only need

to run at certain intervals (for example, to update the operator display), usually run at the base level.

When a task requests a delay its status is changed from runnable to suspended and remains suspended

until the delay period has elapsed.

One method of implementing the delay function is to use a queue of task descriptors, say identified

by the name DELAYED. This queue is an ordered list of task descriptors, the task at the front of the

queue being that whose next running time is nearest to the current time.

Base level:

The tasks at the base level are initiated on demand rather than at some predetermined time interval.

The demand may be user input from a terminal, some process event or some particular requirement of

the data being processed. The way in which the tasks at the base level are scheduled can vary; one

simple way is to use time slicing on a round-robin basis. In this method each task in the runnable

queue is selected in turn and allowed to run until either it suspends or the base level scheduler is again

entered. For real-time work in which there is usually some element of priority this is not a particularly

satisfactory solution. It would not be sensible to hold up a task, which had been delayed waiting for a

relay to close but was now ready to run, in order to let the logging task run.

Most real-time systems use a priority strategy even for the base level tasks. This may be either

a fixed level of priority or a variable level. The difficulty with a fixed level of priority is in

determining the correct priorities for satisfactory operation; the ability to change priorities

dynamically allows the system to adapt to particular circumstances. Dynamic allocation of priorities

can be carried out using a high-level scheduler or can be done on an ad hoc basis from within

BGSIT,Dept. Of ECE

Page 93

Real Time Systems 15EC743

specific tasks. The high level scheduler is an operating system task which is able to examine the use

of the system resources; it may for example check how long tasks have been waiting and increase the

priority of the tasks which have been waiting a long time. The difficulty with the high-level scheduler

is that the algorithms used can become complicated and hence the overhead in running can become

significant.

5.5 TASK MANAGEMENT:

The basic functions of the task management module or executive are:

1. To keep a record of the state of each task;

2. To schedule an allocation of CPU time to each task; and

3. To perform the context switch, that is to save the status of the task that is currently using

the CPU and restore the status of the task that is being allocated CPU time.

In most real-time operating systems the executive dealing with the task management functions is split

into two parts: a scheduler which determines which task is to run next and which keeps a record of the

state of the tasks, and a dispatcher which performs the context switch. Task states:

With one processor only one task can be running at any given time and hence the other tasks

must be in some other state. The number of other states, the names given to the states, and the

transition paths between the different states vary from operating system to operating system. A typical

state diagram is given in Figure6.1 and the various states are as follows (names in parentheses are

commonly are. alternatives):

BGSIT,Dept. Of ECE

Page 94

Real Time Systems 15EC743

Figure: Example of a typical task state diagram.

• Active (running): this is the task which has control of the CPU. It will normally be the task with the

highest priority of the tasks which are ready to run.

• Ready (runnable, on): there may be several tasks in this state. The attribute of the task and the

resources required to run the task must be available for the task to be placed in the Ready state.

• Suspended (waiting, locked out, delayed): the execution of tasks placed this state has been

suspended because the task requires some resource which is not available or because the task is

waiting for some signal from the plant for example input from the analog-to-digital converter, or

because the task is waiting for the elapse of time.

• Existent (dormant, off): the operating system is aware of the existence of this task, but the task has

not been allocated a priority and has not been made runnable.

• Non-existent (terminated): the operating system has not as yet been made aware of the existence of

this task, although it may be resident in the. memory of the computer.

BGSIT,Dept. Of ECE

Page 95

Real Time Systems 15EC743

Task descriptor:

Information about the status of each task is held in a block of memory by the RTOS. This

block is referred to by various names· task descriptor (TD), process descriptor (PD), task control

block (TCB) or task data block (TDB). The information held in the TD will vary from system to

system, but will typically consist of the following:

• Task identification (10);

• Task priority (P);

• Current state of task;

• Area to store volatile environment (or a pointer to an area for storing the volatile

environment); and

• Pointer to next task in a list.

5.6 SCHEDULER AND REAL-TIME CLOCK INTERRUPT HANDLES:

The real-time clock handler and the scheduler for the clock level tasks must be carefully

designed as they run at frequent intervals. Particular attention has to be paid to the method of

selecting the tasks to be run at each clock interval. If ached of all tasks were to be carried out then the

overheads involved could become significant.

System commands which change task status.

The range of system commands affecting task status varies with the operating system. Typical states

and commands are shown in Figure 6.12 and fuller details of the commands are given in Table. Note

that this system distinguishes between tasks which are suspended awaiting the passage of time - these

tasks are marked as delayed - and those tasks which are waiting for an event or a system resource

these are marked as locked out. The system does not explicitly support base level tasks; however, the

lowest four priority levels of the clock level tasks can be used to create a base level system A so -

called free time executive (FTX) is provided which if used runs at priority level n - 3 where n is the

lowest-priority task number. The FTX is used to run tasks at priority levels n - 2, n - I and n; it also

provides support for the chaining of tasks. The dispatcher is unaware of the fact that tasks at these

three priority levels are being changed; it simply treats whichever tasks are in the lowest three priority

BGSIT,Dept. Of ECE

Page 96

Real Time Systems 15EC743

levels as low-priority tasks. Tasks run under the FTX do not have access to the system commands

(except OFFCO1 that is turn task off).

Figure: RTOS state diagram.

Dispatcher- search for work:

The dispatcher/scheduler has two entry conditions:

1. The real-time clock interrupt and any interrupt which signals the completion of an

input/output request;

2. A task suspension due to a task delaying, completing or requesting an input/output

transfer.

In response to the first condition the scheduler searches for work starting with the highest-

priority task and checking each task in priority order (see Figure 6.14). Thus if tasks with a high

repetition rate are given a high priority they will be treated as if they were clock level tasks, that is

they will be run first during each system clock period. In response to the second condition a search for

work is started at the task with the next lowest priority to the task which has just been running. There

cannot be another higher-priority task ready to run since a higher-priority task becoming ready always

pre-empts a lower-priority-running task. The system commands for task management are

BGSIT,Dept. Of ECE

Page 97

Real Time Systems 15EC743

issued as calls from the assembly level language and the parameters are passed either in the CPU

registers or as a control word immediately following the call statement.

5.7 MEMORY MANAGEMENT:

Since the majority of control application software is static - the software is not dynamically

created or eliminated at run-time - the problem of memory management is simpler than for multi-

programming, on-line systems. Indeed with the cost of computer hardware, both processors and

memory, reducing many control applications use programs which are permanently resident in fast

access memory. With permanently resident software the memory can be divided as shown in Figure.

The user space is treated as one unit and the software is linked and loaded as a single program into the

user area. The information about the various tasks is conveyed to the operating system by means of a

create task statement. Such a statement may be of the form the exact form of the statement will

depend on the interface between the high-level language and the operating system. An alternative

arrangement is shown in Figure. The available memory is divided into predetermined segments and

the tasks are loaded individually into the various segments. The load operation would normally be

carried out using to command processor. With this type of system the entries in the TD (or the

operation system tables) have to be made from the console using a memory examine as change

facility.

Divided (partitioned) memory was widely used in many early real-time operating systems and

it was frequently extended to allow several tasks to share on:

partition; the tasks were kept on the backing store and loaded into the appropriate partition when

required. There was of course a need to keep any tasks in which timing was crucial (hard time

constraint tasks) in fast access memory permanent other tasks could be swapped between fast

memory and backing store. The difficulty with this method is, of course, in choosing the best mix of

partition sizes. The partition size and boundaries have to be determined at system generation.

BGSIT,Dept. Of ECE

Page 98

Real Time Systems 15EC743

Figure: Non-partitioned memory.

Figure: Partitioned memory.

5.8 CODE SHARING:

In many applications the same actions have to be carried out in several different tasks. In a

conventional program the actions would be coded as a subroutine and one copy of the subroutine

would be included in the program. In a multi-tasking system each task must have its own copy of the

subroutine or some mechanism must be provided to prevent one task interfering with the use of the

code by another task. The problems which can arise are illustrated in Figure 6.20. Two tasks share the

subroutine S. If task A is using the subroutine but before it finishes some even occurs which causes a

rescheduling of the tasks and task B runs and uses the subroutine, then when a return is made to task

BGSIT,Dept. Of ECE

Page 99

Real Time Systems 15EC743

A, although it will begin to use subroutine S again at the correct place, the values of locally held data

will have been changed and will reflect the information processed within the subroutine by task B.

Two methods can be used to overcome this problem:

• serially reusable code; and

• re-entrant code.

Figure: Sharing a subroutine in multi-tasking system.

Serially reusable code:

As shown in Figure, some form of lock mechanism is placed at the beginning of the routine

such that if any task is already using the routine the calling task will not be allowed entry until the

task which is using the routine unlocks it. The use of a lock mechanism to protect a subroutine is an

example of the need for mechanisms to support mutual exclusion when constructing an operating

system.

BGSIT,Dept. Of ECE

Page 100

Real Time Systems 15EC743

Figure: Serially reusable code.

Re-entrant code:

If the subroutine-can be coded such that it does not hold within it any data that is it is purely

code - any intermediate results are stored in the calling task or in a stack associated with the task -

then the subroutine is said to be re-entrant. Figure shows an arrangement which can be used: the task

descriptor for each task contains a pointer to a data area - usually a stack area - which is used for the

storage of all information relevant to that task when using the subroutine. Swapping between tasks

while they are using the subroutine will not now cause any problems since the contents of the stack

pointer will be saved with the volatile environment of the task and will be restored when the task

resumes.

All accesses to data by the subroutine will be through the stack and hence it will

automatically manipulate the correct data. Re-entrant routines can be shared between several tasks

since they contain no data relevant to a particular task and hence can be stopped and restarted at a

different point in the routine without any loss of information. The data held in the working registers

of the CPU is stored in the relevant task descriptor when task swapping takes place. Device drivers in

conventional operating systems are frequently implemented using re-entrant code. The PID control1er

code segment uses the information in the LOOP descriptor and the T ASK to calculate the control

value and to send it to the control1er. The actual task is made up of the LOOP descriptor, the TASK

segment and the PID control code segment. The addition of another loop to the system requires the

provision of new loop descriptors; the actual PID control code remains unchanged.

BGSIT,Dept. Of ECE
Page 101

Real Time Systems 15EC743

Figure: Use of re-entrant code for sharing.

5.9 RESOURCE CONTROL: AN EXAMPLE OF AN

INPUT/OUTPUT SUBSYSTEM (lOSS)

One of the most difficult areas of programming is the transfer of information to and from

external devices. The availability of a wel1-designed and implemented input/output subsystem (lOSS)

in an operating system is essential for efficient programming. The lOSS handles all the details of the

devices. In a multi-tasking system the lOSS should also deal with all the problems of several tasks

attempting to access the same device. A typical lOSS will be divided into two levels as shown in

Figure. The I/O manager accepts the system calls from the user tasks and transfers the information

contained in the calls to the device control block (DCB) for the particular device.

BGSIT,Dept. Of ECE

Page 102

Real Time Systems 15EC743

Figure: General structure of IOSS.

5.10 TASK CO-OPERATION AND COMMUNICATION:

In real-time systems tasks are designed to fulfil a common purpose and hence they need to

communicate with each other. However, they may also be in competition for the resources of the

computer system and this competition must be regulated. Some of the problems which arise have

already been met in considering the input/output subsystem and they involve:

• Mutual exclusion;

• Synchronization; and

• Data transfer.

BGSIT,Dept. Of ECE

Page 103

Real Time Systems 15EC743

Mutual exclusion:

A multi-tasking, operating system allows the sharing of resources between several

concurrently active tasks. This does not imply that the resources can be used simultaneously. The use

of some resources is restricted to only one task at a time. For others, for example a re-entrant code

module, several tasks can be using them at the same time. The restriction to one task at a time has to

be made for resource such as input and output devices; otherwise there is a danger that input intended

for one task could get corrupted by input for another task. Similarly problems can arise if two tasks

share a data area and both tasks can write to the data area.

Data transfer:

RTOSs typically support two mechanisms for the transfer or sharing of data between tasks:

these are the pool and the channel.

Pool is used to hold data common to several tasks, for example tables of values or parameters

which tasks periodically consult or update. The write operation on a pool is destructive and the read

operation is non-destructive.

Channel supports communication between producers and consumers of data. It can contain

one or more items of information. Writing to a channel adds an item without changing items already

in it. The read operation is destructive in that it removes an item from the channel. A channel can

become empty and also, because in practice its capacity is finite, it can become full.

It is normal to create a large number of pools so as to limit the use of global common data

areas. To avoid the problem of two or more tasks accessing a pool simultaneously mutual exclusion

on pools is required. The most reliable form of mutual exclusion for a pool is to embed the pool

inside a monitor. Given that the read operation does not change the data in a pool there is no need to

restrict read access to a pool to one task at a time. Channels provide a direct communication link

between tasks, normally on a one-to-one basis. The communication is like a pipe down which

successive collections of items of data - messages - can pass. Normally they are implemented so that

they can contain several messages and so they act as a buffer between the tasks. One task is seen as

the producer of information and the other as the consumer. Because of the buffer function of the

BGSIT,Dept. Of ECE
Page 104

Real Time Systems 15EC743

channel the producer and consumer tasks can run asynchronously. There are two basic

implementation mechanisms for a channel:

• Queue (linked list); and

• Circular buffer.

The advantage of the queue is that the number of successive messages held in the channel is

not fixed. The length of the queue can grow, the only limit being the amount of available memory.

The disadvantage of the queue is that as the length of the queue increases the access time that is the

time to add and remove items from the queue, increases. For this reason and because it is not good

practice to have undefined limits on functions in real-time systems queues are rarely used. The

circular buffer uses a fixed amount of memory, the size being defined by the designer of the

application. If the producer and consumer tasks run normally they would typically add and remove

items from the buffer alternately. If for some reason one or the other is suspended for any length of

time the buffer will either fill up or empty. The tasks using the buffer have to check, as appropriate,

for buffer full and buffer empty conditions and suspend their operations until the empty or full

condition changes.

Synchronization with Data transfer:

There are two main forms of synchronization involving data transfer. The first Involves the

producer task simply signaling to say that a message has been produced and is waiting to be

collected, and the second is to signal that a message is ready and to wait for the consumer task to

reach a point where the two tasks can exchange the data. The first method is simply an extension of

the mechanism used in the example in the previous section to signal that a channel was empty or full.

Instead of signaling these conditions a signal is sent each time a message is placed in the channel.

Either a generalized semaphore or signal that counts the number of sends and waits, or a counter, has

to be used.

5.11 LIVENESS:

An important property of a multi-tasking real-time system is Liveness. A system (a set of

tasks) is said to possess Iiveness if it is free from livelock, deadlock. and indefinite postponement.

Livelock is the condition under which the tasks requiring mutually exclusive access to a set of

resources both enter busy wait routines but neither can get out of the busy wait because they are

waiting for each other. The CPU appears to be doing useful work and hence the term Livelock.

BGSIT,Dept. Of ECE
Page 105

Real Time Systems 15EC743

Deadlock is the condition in which a set of tasks are in a state such that it is impossible for any of

them to proceed. The CPU is free but there are no tasks that are ready to run.

5.12 MINIMUM OPERATING SYSTEM KERNEL:

As mentioned in the introduction there has been considerable interest in recent years in the

idea of providing a minimum kernel of RTOS support mechanisms and constructing the required

additional mechanisms for a particular application or group of applications. One possible set of

functions and primitives for RTGS is:

Functions:

1. A clock interrupts procedure that decrements a time count for relevant tasks,

2. A basic task handling and context switching mechanism that will support the

moving of tasks between queues and the formation of task queues.

3. Primitive device routines (including real-time clock support).

Primitives:

WA I T for some condition (including release of exclusive access rights).

S I G N A L condition and thus release one (or all) tasks waiting on the condition,

ACQUIRE exclusive rights to a resource (option - specify a time-out condition).

RELEASE exclusive rights to a resource.

DELAY task for a specified time.

CYCLE task, that is suspend until the end of its specified cyclic period.

Recommended Questions:

1. Draw up a list of functions that you would expect to find in a real-time operating system.

Identify the functions which are essential for a real-time system.

2. Discuss the advantages and disadvantages of using

(a) Fixed table

(b) Linked list

Methods for holding task descriptors in a multi-tasking real-time operating system.

BGSIT,Dept. Of ECE
Page 106

Real Time Systems 15EC743

3 A range of real-time operating systems are available with different memory allocation

strategies. The strategies range from permanently memory-resident tasks with no task

swapping to fully dynamic memory allocation. Discuss the advantages and disadvantages of

each type of strategy and give examples of applications for which each is most suited.

4. What are the major differences in requirements between a multi-user operating system

and a multi-tasking operating system?

5. What is the difference between static and dynamic priorities? Under what circumstances

can the use of dynamic priorities be justified?

1. Choosing the basic clock interval (tick) is an important decision in setting up an RTOS. Why

is this decision difficult and what factors need to be considered when choosing the clock

interval?

2. List the minimum set of operations that you think a real-time operating system

kernel needs to support.

8. What is meant by context switching and why it is required?

BGSIT,Dept. Of ECE

Page 107

Real Time Systems 15EC743

Module-5

Design of RTSS General Introduction

Introduction, Specification documentation, Preliminary design, Single –Program Approach,

Foreground /Background, Multi- Tasking approach, Mutual Exclusion Monitors.

Recommended book for reading:

1. Real –Time Computer control –An Introduction, Stuart Bennet, 2
nd

 Edn. Pearson

Education 2005.

2. Real-Time Systems Design and Analysis, Phillip. A. Laplante, Second Edition, PHI, 2005.

3. Real time Systems Development, Rob Williams, Elsevier, 2006.

7.1 DESIGN O F RTSS- GENERAL

INTODUCTION INTRODUCTION

The approach to the design of real-time computer systems is no different in outline from that

required for any computer-based system or indeed most engineering systems. The work can be

divided into two main sections:

• The planning phase; and

• The development phase.

It is concerned with interpreting use requirements to produce a detailed specification of the system to

be developed and an outline plan of the resources - people, time, equipment, costs - required to carry

out the development. At this stage preliminary decisions regarding the division of functions between

hardware and software will be made. A preliminary assessment of the type of computer structure - a

single central computer, a hierarchical system, or a distributed system - will also be made. The

outcome of this stage is a specification or requirements document. (The terminology used in books on

software engineering can be confusing; some refer to a specification requirement document as well as

to specification document and requirements document. It clearer and simpler to consider that

documents produced by the user or customer describe requirements, and documents produced by the

supplier or designer give the specifications.) It cannot be emphasized too strongly that the

BGSIT,Dept. Of ECE

Page 108

Real Time Systems 15EC743

specification document for both the hardware and software which results from this phase must be

complete, detailed and unambiguous. General experience has shown that a large proportion of errors

which appear in the final system can be traced back to unclear, ambiguous or fault) specification

documents. There is always a strong temptation to say 'It can be decided later'; deciding it later can

result in the need to change parts of the system which have already been designed. Such changes are

costly and frequently lead to the introduction of errors. This shows the distribution of errors and cost

of rectifying them (the figures are taken from DeMarco, 1978). The detailed design is usually broken

down into two stages:

• Decomposition into modules; and

• Module internal design.

For real-time systems additional heuristics are required, one of which is to divide modules into the

following categories:

• Real-time, hard constraint;

• Real-time, soft constraint; and

• Interactive.

The arguments given in Chapter 1 regarding the verification and validation of different types of

program suggest a rule that aims to minimize the amount of software that falls into the hard constraint

category since this type is the most difficult to design and test.

7.2 SPECIFICATION DOCUMENTATION:

To provide an example for the design procedures being described we shall consider a system

comprising several of the hot-air blowers described. It is assumed that the planning phase has been

completed and a specification document has been prepared. A PID controller with a sampling interval

of 40 ms is to be used. The sampling interval may be changed, but will not be less than 40 ms. The

controller parameters are to be expressed to the user in standard analog form, that is proportional

gain, integral action time and derivative action time. The set point is to be entered from the keyboard.

The controller parameters are to be variable and are to be entered from the keyboard.

7.3 PRELIMINARY DESIGN:

Hardware design:

BGSIT,Dept. Of ECE
Page 109

Real Time Systems 15EC743

There are many different possibilities for the hardware structure. Obvious arrangements are:

1. Single computer with multi-channel ADC and DAC boards.

2. Separate general purpose computers on each unit.

3. Separate computer-based microcontrollers on each unit linked to a single general. Purpose

computer.

Each of these configurations needs to be analyzed and evaluated. Some points to consider are:

Option 1: given that the specification calls for the system to be able to run with a sample interval for

the control loop of 40 ms, can this be met with 12units sharing a single processor?

Option 2: is putting a processor that includes a display and keyboard on each unit an expensive

solution? Will communication between processors be required? (Almost certainly the answer to this is

yes; operators and managers will not want to have to use separate displays and keyboards.)

Option 3: what sort of communication linkage should be used? A shared high speed bus? A local-area

network? Where should the microcontrollers be located? At each blower unit or together in a central

location? Each option needs careful analysis and evaluation in terms of cost and performance. The

analysis must include consideration of development costs, performance operating and maintenance

costs. It should also include consideration of reliability and safety. To provide a basis for

consideration of the widest range of approaches to software design we will assume that option 1

above is chosen.

Software design:

Examining the specification shows that the software has to perform several

different functions:

• DDC for temperature control;

• Operator display;

• Operator input;

• Provision of management information;

• System start-up and shut-down; and

• clock/calendar function.

The various functions and type of time constraint are shown in Figure. The control module has

a hard constraint in that it must run every 40 ms. In practice this constraint may be relaxed a little to,

say, 40 ms ± 1 ms with an average value over 1 minute of, say, 40 ms ± 0.5 ms. In general the

BGSIT,Dept. Of ECE

Page 110

Real Time Systems 15EC743

sampling time can be specified as Ts ± es with an average value, over time T, of Ts ± ea. The

requirement may also be relaxed to allow, for example, one sample in 100 to be missed. These

constraints will form part of the test specification. The clock/calendar module must run every 20 ms

in order not to miss a clock pulse. The operator display, as specified, has a hard constraint in that an

update interval of 5 seconds is given. Common sense suggests that this is unnecessary and an average

time of 5 seconds should be adequate; however, a maximum time would also have to be specified, say

10 seconds.. These would have to be decided upon and agreed with the customer. They should form

part of the specification in the requirements document. The start-up module does not have to operate

in real time and hence can be considered as a standard interactive module. The sub-problems will

have to share a certain amount of information and how this is done and how the next stages of the

design proceed will depend upon the general approach to the implementation. There are three

possibilities:

• Single program;

• Foreground/background system; and

• Multi-tasking.

Figure: Basic software modules.

BGSIT,Dept. Of ECE

Page 111

Real Time Systems 15EC743

7.4 SINGLE- PROGRAM APPROACH:

Using the standard programming approach the modules shown in Figure are treated as

procedures or subroutines of a single main program. The flow chart of such a program is illustrated in

Figure. This structure is easy to program; however, it imposes the most severe of the time constraints

- the requirement that the clock/calendar module must run every 20 ms - on all of the modules. For

the system to work the clock/calendar module and anyone of the other modules must complete their

operations within 20 ms. If fl, fz, f3, f4 and fs are the maximum computation times for the module's

clock/calendar, control, operator display, operator input and management output respectively, then a

requirement for the system to work can be expressed as fl + max (tz, f3, f4, fs) < 20 ms.

The single-program approach can be used for simple, small systems and it lead to a clear and easily

understandable design, with a minimum of both hardware and software. Such systems are usually

easy to test.. In the above example the management output requirement makes it unsuitable for the

single-program approach; if that requirement is removed the approach could be used. It may,

however, require the division of the display update module into three modules: display date and time;

display process values; and display controller parameters.

Figure: Single program approach.

BGSIT,Dept. Of ECE
Page 112

Real Time Systems 15EC743

7.5 FOREGROUND/BACKGROUND SYSTEMS:

These are obvious advantages - less module interaction, less tight time constraints if the

modules with hard time constraints can be separated from, and handled independently of, the modules

with soft time constraints or no time constraints. The modules with hard time constraints are run in

the so-called 'foreground' and the modules with soft constraints (or no constraints) are run in the

'background'. The foreground modules, or 'tasks' as they are usually termed, have a higher priority

than the background tasks and a foreground task must be able to interrupts background task. The

partitioning into foreground and background usually requires the support of a real-time operating

system, for example the Digital Equipment Corporation's RT/11 system. It is possible, however, to

adapt many standard operating systems, for example MS-DOS, to give simple

foreground/background operation if the hardware supports interrupts.

The foreground task is written as an interrupt routine and the background task as a standard

program. If you use a PC you are in practice using a foreground/background system. The application

program that you are using (a word processor, a spreadsheet, graphics package or some program

which you have written yourself in a high-level language) is, if we use the terminology given above,

running in the background. In the foreground are several interrupt-driven routines - the clock, the

keyboard input, the disk controller - and possibly some memory-resident programs which you have

installed - a disk caching program or an extended memory manager. The terminology foreground and

background can be confusing; literature concerned with non-real-time software uses foreground to

refer to the application software and background to refer to interrupt routines that are hidden from the

user.

BGSIT,Dept. Of ECE
Page 113

Real Time Systems 15EC743

Figure: Software module for foreground/background system.

7.6 MULTI-TASKING APPROACH:

The design and programming of large real-time systems is eased if the foreground/background

partitioning can be extended into multiple partitions to allow the concept of many active tasks. At the

preliminary design stage each activity is considered to be a separate task. (Computer scientists use the

word process rather than task but this usage has not been adopted because of the possible confusion

which could arise between internal computer processes and the external processes on the plant.) The

implications of this approach are that each task may be carried out in parallel .and there is no

assumption made at the preliminary design stage as to how many processors will be used in the

system. The implementation of a multi-tasking system requires the ability to:

• Create separate tasks;

• Schedule running of the tasks, usually on a priority basis;

BGSIT,Dept. Of ECE

Page 114

Real Time Systems 15EC743

• Share data between tasks;

• Synchronize tasks with each other and with external events;

• Prevent tasks corrupting each other; and

• Control the starting and stopping of tasks.

The facilities to perform the above actions are typically provided by a real-time operating

system (RTOS) or a combination of RTOS and a real-time programming language. For simplicity we

will assume that we are using only one CPU and that the use of this CPU is time shared between the

tasks. We also assume that a number of so-called primitive instructions exist. These are instructions

which are part of a programming language or the operating system and their implementation and

correctness is guaranteed by the system. All that is of concern to the user is that an accurate

description of the syntax and semantics is made available. In practice, with some understanding of the

computer system, it should not be difficult to implement the primitive instructions. Underlying the

implementation of primitive instructions will be an eventual reliance on the system hardware. For

example, in a common memory system some form of arbiter will exist to provide for mutual

exclusion in accessing an individual memory location.

7.7 MONITORS:

The basic idea of a monitor is implementation of a monitor in Moouia-2 to protect access to a

buffer area is shown. Monitors themselves do not provide a mechanism for synchronizing tasks and

hence for this purpose the monitor construct has to be supplemented by allowing, for example, signals

to be used within it.

The standard monitor construction outlined above, like the semaphore, does not reflect the priority of

the task trying to use a resource; the first task to gain entry can lock out other tasks until it completes.

Hence a lower-priority task could hold up a higher-priority. The lack of priority causes difficulties for

real-time systems. Traditional operating systems built as monolithic monitors avoided the problem by

ensuring that once an operating system call was made (in other words, when a monitor function was

invoked) then the call would be completed without interruption from other tasks. The monitor

function is treated as a critical section. This does not mean that the whole operation requested was

necessarily completed without interruption. For example, a request for access to a printer for output

would be accepted and the request queued; once this had been done another task could enter the

BGSIT,Dept. Of ECE
Page 115

Real Time Systems 15EC743

monitor to request output and either be queued, or receive information from the monitor as to the

status of the resource. The return of information is particularly important as it allows the application

program to make a decision as to whether to wait for the resource or take some other action.

Preventing lower-priority tasks locking out higher-priority tasks through the monitor access

mechanism can be tackled in a number of ways. One solution adopted in some implementations of

Modula-2 is to run a monitor with all interrupts locked out; hence a monitor function once invoked

runs to completion. In many applications, however, this is too restrictive and some implementations

allow the programmer to set a priority level on a monitor such that all lower-priority tasks are locked

out - note that this is an interrupt priority level, not a task priority, The monitor has proved to be a

popular idea and in practice it provides a good solution to many of the problems of concurrent

programming.

The benefits and popularity of the monitor constructs stem from its modularity which means

that it can be built and tested separately from other parts of the system, in particular from the tasks

which will use it. Once a fully tested monitor is introduced into the system the integrity of the data or

resource which it protects is guaranteed and a fault in a task using the monitor cannot corrupt the

monitor or the resource which it protects. Although it does rely on the use of signals for inter task

synchronization it does have the benefit that the signal operations are hidden within the monitor.

The monitor is an ideal vehicle for creating abstract mechanisms and thus fits in well with the

idea of top-down design. However, the nested monitor call problem calling procedures in one monitor

from within another monitor can lead to deadlock. Providing that nested monitor calls are prohibited

the use of the monitor concept provides a satisfactory solution to many of the problems for a single

processor machine or for a multi-processor machine with shared memory, It can also be used on

distributed systems.

The monitor's usefulness in some real-time applications is restricted because a task leaving a monitor

can only signal and awaken one other task - to do otherwise would breach the requirement that only

one task be active within a monitor. This means that a single controlling synchronizer task, for

example a clock level scheduler, cannot be built as a monitor. The problem can be avoided by

allowing signals to be used outside a monitor but then all the problems associated with signals and

semaphores re-emerge.

BGSIT,Dept. Of ECE

Page 116

Real Time Systems 15EC743

Recommended Questions:

1. Explain the different phases involved in the design of a RTS.

2. Explain foreground and background system with flowchart.

3. Explain mutual exclusion, using conditional flags.

4. With a neat flow chart, describe the single program approach, with reference to RTS design.

5. Write a note on basic software module, with respect to RTS.

6. Considering a system comprising of several hot air blowers. Prepare specification documents

of the same.

7. Explain the data concept of data sharing using common memory.

8. Explain software design for RTS using software module

9. Mention the importance of conditions flag and binary semaphores

BGSIT,Dept. Of ECE

Page 117

Real Time Systems 15EC743

RTS Development Methodologies

Introduction, Yourdon Methodology, Requirement definition For Drying Oven, Ward and Mellor

Method, Hately and Pirbhai Method.

Recommended book for reading:

1. Real –Time Computer control –An Introduction, Stuart Bennet, 2
nd

 Edn. Pearson

Education 2005.

2. Real-Time Systems Design and Analysis, Phillip. A. Laplante, Second Edition, PHI, 2005.

3. Real time Systems Development, Rob Williams, Elsevier, 2006.

8.1 RTS DEVELOPMENT

METHODOLOGIES INTRODUCTION

The production of robust, reliable software of high quality for real-time computer control

applications is a difficult task which requires the application of engineering methods. During the last

ten years increasing emphasis has been placed on formalizing the specification, design and

construction of such software, and several methodologies are now extant. All of the methodologies

address the problem in three distinct phases. The production of a logical or abstract model - the

process of specification; the development of an implementation model for a virtual machine from the

logical model - the process of design; and the construction of software for the virtual machine

together with the implementation of the virtual machine on a physical system - the process of

implementation. These phases, although differently named, correspond to the phases of development

generally recognized in software engineering texts. Abstract model: the equivalent of a requirements

specification, it is the result of the requirements capture and analysis phase. Implementation model:

this is the equivalent of the system design; it is the product of the design stages - architectural design

and the detail design

BGSIT,Dept. Of ECE

Page 118

Real Time Systems 15EC743

Although there is a logical progression from abstract model to implementation model to

implemented software, and although three separate and distinct artifacts abstract model,

implementation model, and deliverable system - are produced, the phases overlap in time. The phases

overlap because complex systems are best handled by a hierarchical approach: determination of the

detail of the lower levels in the hierarchy of the logical model must be based on knowledge of higher

- level design decisions, and similarly the lower-level design decisions must be based on the higher-

level implementation decisions. Another way of expressing this is to say that the higher-level design

decisions determine the requirements specification for the lower levels in the system.

8.2 YOURDON METHODOLOGY:

Figure: Software modeling

BGSIT,Dept. Of ECE
Page 119

Real Time Systems 15EC743

The Yourdon methodology has been developed over many years. It is a structured methodology based

on using data-flow modeling techniques and junctional decomposition. It supports development from

the initial analysis stage through to implementation. Both Ward and Mellor (1986) and Hatley and

Pirbhai (1988) have introduced extensions to support the use of the Yourdon approach for the

development of real-time systems and the key ideas of their methodologies are:

• Subdivision of system into activities;

• Hierarchical structure;

• Separation of data and control flows;

• No early commitment to a particular technology; and

• Traceability between specification, design and implementation.

8.3 REQUIREMENT DEFINITION FOR DRYING OVEN:

Components are dried by being passed through an oven. The components are placed on a

conveyor belt which conveys them slowly through the drying oven. The oven is heated by three gas-

fired burners placed at intervals along the oven. The temperature in each of the areas heated by the

burners is monitored and controlled. An operator console unit enables the operator to monitor and

control the operation of the unit. The system is presently controlled by a hard wired control system.

The requirement is to replace this hard wired control system with a computer-based system. The new

computer-based system is also to provide links with the management computer over a communication

link.

Figure: General arrangement of drying oven.

BGSIT,Dept. Of ECE

Page 120

Real Time Systems 15EC743

I

nput/output

The inputs come from a plant interface cubicle and from the operator. There will need to be inputs

obtained from the communication interface.

Plant Inputs

A thermocouple is provided in each heater area - the heater areas are pre-heat, drying, and cooling.

The inputs are available as voltages in the range 0 to 10 volts at pins 1 to 9 on socket j22 in the

interface cubicle.

The conveyor speed is measured by a pulse counting system and is available on pin 3 at socket j23 in

the interface cubicle. It is referred to as con-speed..

There are three interlocked safety guards on the conveyor system and these are in-guard, out-guard,

and drop-guard. Signals from these guards are provided on pins 4, 5, 6 of socket j23. These signals

are set at logic HIGH to indicate that the guards are locked in place.

A conveyor-halted signal is provided on pin I of socket j23. This signal is logic HIGH when the

conveyor is running.

Plant Outputs

Heater Control: each of the three heaters has a control unit. The input to the control unit is a voltage

in the range 0 to 10 volts which corresponds to no heat output to maximum heat output. Conveyor

Start-up: a signal convey-start is output to the conveyor motor control unit.

Guard Locks: asserting the guard-lock line, pin 8 on j10 , causes the guards to be locked in position

and turns on the red indicator light on the outside of the unit. Operator Inputs

The operator sends the following command inputs: Start, Stop, Reset, Re-start, and Pause. The

operator can also adjust the desired set point for each area of the dryer. Operator Outputs

The operator VDU displays the temperature in each area, the conveyor belt speed, and the alarm

status. It should also display the current date and time and the last operator command issued.

8.4 WARD AND MELLOR METHOD:

The outline of the Ward and Mellor method is shown in Figure. The starring point is to build,

from the analysis of the requirements, a software model representing the requiremel1ls in terms of the

BGSIT,Dept. Of ECE
Page 121

Real Time Systems 15EC743

abstract entities. This model is called the essential model. It is in two parts: an environmental model

which describes the relationship of the system being modeled with its environment; and the

behavioral model which describes the internal structure of the system.

The second stage the design stage - is to derive from the essential model an implementation

model which defines how the system is implemented on a particular technology and shows the

allocation of parts of the system to processors, the subdivision of activities allocated to each processor

into tasks, and the structure of the code for each task. The essential model represents what the system

is required to do; the implementation model shows how the system will do what has to be done. The

implementation model provides the design from which the implementers of the physical system can

work. Correct use of the method results in documentation that provides traceability from the physical

system to the abstract speci- fication model.

Figure: Outline of abstract of modeling approach Ward and Mellor.

BGSIT,Dept. Of ECE
Page 122

Real Time Systems 15EC743

8.5 HATELY AND PIRBHAI METHOD:

As might be expected the general approach of the Hatley and Pirbhai methodology is very

close to that of Ward and Mellor. There are some differences in terminology which are summarized

in Table.

Separate diagrams are used for data and control;

• only one CSPEC can appear at any given CFD level; and

• all data f10ws and control f10ws are shown with single arrow heads;

BGSIT,Dept. Of ECE

Page 123

Real Time Systems 15EC743

Figure: Structure of requirement model.

Figure: Hately and Pirbhai notation.

BGSIT,Dept. Of ECE

Page 124

Real Time Systems 15EC743

8.6 COMMENTS ON THE YOURDON METHODOLOGY:

Both methodologies - Ward and Mellor and Hatley and Pirbhai - are simple to learn and have

been widely used. They are founded on the well-established structured methods developed by the

Yourdon organization and hence over the years a lot of experience in using the techniques has been

gained. For serious use on large scale systems they both require the support of CASE tools. The

labour involved in checking the models by hand is such that short cuts are likely to be taken and

mistakes are bound to occur. It can be argued that the methods are really only a set of procedures for

documenting a specification and a design and to some extent this is true.

The analysis procedures are minimal and adequate checking for consistency can be performed

only with the support of a CASE tool. However, the methodologies are still useful in that the

procedures they recommend provide a sensible way of preparing both a specification and a design in

that they encourage the development of hierarchical, modular structures. the two, the Hatley and

Pirbhai method is the more structured and formalized in its approach. Its diagrams are less cluttered

than those of the Ward and Mellor method and, once the separation is understood, are easier to

follow. Many CASE tools provide alternative displays which allow a choice of either separate

diagrams or a combined diagram with switching between the two forms. The weakness of both

methods lies in the allocation of processors and tasks. The suggestion that one allocates activities to

processors and then subdivides the activities into tasks allocated to each processor appears at first

sight a sensible way to proceed. However, when it is tried one soon realizes that the information

required to do this is not available.

BGSIT,Dept. Of ECE

Page 125

Real Time Systems 15EC743

Figure: The structure of architectural model.

Recommended Questions:

1. With a general arrangement for a drying oven, explain its requirements.

2. Write about environmental model, with context diagram for drying oven.

Page 126

Real Time Systems 15EC743

3. Write explanatory notes on the following: A).Hatley and pirbhai methods. B).Ward and millar

methods.

4. Show the outline of abstract modeling approach of ward and Mellor and explain.

5. Differentiate between Ward Mellor and hatley and pirbhai mythologies.

4. Explain the CFDO drying over controller using Hatley and pirbhai notation.

6. What do you mean by enhancing the model? Explain with a neat diagram,

the relationship between real environment and virtual environment.

7. Write short notes on: i) PSPECs and CSPECs ii) Software modeling iii) YOUR DON methodology

BGSIT,Dept. Of ECE

Page 127

